Partial Boolean algebras and the logical exclusivity principle

Samson Abramsky
samson.abramsky@cs.ox.ac.uk

Rui Soares Barbosa

INTERNATIONAL IBERIAN NANOTECHNOLOGY
LABORATORY
rui.soaresbarbosa@inl.int

17th International Conference on Quantum Physics and Logic (QPL 2020) Paris ${ }^{\text {a }}$ moveable feast 4th June 2020

Quantum physics and logic

Traditional quantum logic
Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}, is the lattice of propositions.

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}, is the lattice of propositions.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}, is the lattice of propositions.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$
- What is the operational meaning of $p \wedge q$,

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}, is the lattice of propositions.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$
- What is the operational meaning of $p \wedge q$, when p and q do not commute?

Partial Boolean algebras

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- This seminal work on contextuality used partial Boolean algebras, which only admit physically meaningful operations.

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}, is the lattice of propositions.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$
- What is the operational meaning of $p \wedge q$, when p and q do not commute?

Partial Boolean algebras

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- This seminal work on contextuality used partial Boolean algebras, which only admit physically meaningful operations.

Kochen (2015), 'A reconstruction of quantum mechanics'.

- Kochen develops a large part of foundations of quantum theory in this framework.

Overview

- Partial Boolean algebras
- Free extensions of comeasurability
- Contextuality
- Exclusivity principles
- Tensor products

Partial Boolean algebras

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$
satisfying the usual axioms: $\langle A, \vee, 0\rangle$ and $\langle A, \wedge, 1\rangle$ are commutative monoids, \vee and \wedge distribute over each other, $a \vee \neg a=1$ and $a \wedge \neg a=0$.

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$
satisfying the usual axioms: $\langle A, \vee, 0\rangle$ and $\langle A, \wedge, 1\rangle$ are commutative monoids, \vee and \wedge distribute over each other, $a \vee \neg a=1$ and $a \wedge \neg a=0$.
E.g.: $\langle\mathcal{P}(X), \varnothing, X, \cup \cap\rangle$

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$
satisfying the usual axioms: $\langle A, \vee, 0\rangle$ and $\langle A, \wedge, 1\rangle$ are commutative monoids, \vee and \wedge distribute over each other, $a \vee \neg a=1$ and $a \wedge \neg a=0$.
E.g.: $\langle\mathcal{P}(X), \varnothing, X, \cup, \cap\rangle$, in particular $\mathbf{2}=\{0,1\} \cong \mathcal{P}(\{\star\})$.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the given operations.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the given operations.
E.g.: $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the given operations.
E.g.: $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}.

Conjunction, i.e. product of projectors, becomes partial, defined only on commuting projectors.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

Heunen \& van der Berg (2012), 'Non-commutativity as a colimit'.

- Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

Heunen \& van der Berg (2012), 'Non-commutativity as a colimit'.

- Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.
- Coproduct: $A \oplus B$ is the disjoint union of A and B with identifications $0_{A}=0_{B}$ and $1_{A}=1_{B}$. No other commeasurabilities hold between elements of A and elements of B.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

Heunen \& van der Berg (2012), 'Non-commutativity as a colimit'.

- Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.
- Coproduct: $A \oplus B$ is the disjoint union of A and B with identifications $0_{A}=0_{B}$ and $1_{A}=1_{B}$. No other commeasurabilities hold between elements of A and elements of B.
- Coequalisers, and general colimits: shown to exist via Adjoint Functor Theorem.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

Heunen \& van der Berg (2012), 'Non-commutativity as a colimit'.

- Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.
- Coproduct: $A \oplus B$ is the disjoint union of A and B with identifications $0_{A}=0_{B}$ and $1_{A}=1_{B}$. No other commeasurabilities hold between elements of A and elements of B.
- Coequalisers, and general colimits: shown to exist via Adjoint Functor Theorem.
- We give a direct construction of colimits.
- More generally, we show how to freely generate from a given partial Boolean algebra a new one satisfying prescribed additional commeasurability relations.

Free extensions of comeasurability

Free extensions of comeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean algebra $A[\odot]$ such that:

Free extensions of comeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean algebra $A[\odot]$ such that:

- There is a pBA-morphism $\eta: A \longrightarrow A[\odot]$ satisfying $a \odot b \Longrightarrow \eta(a) \odot_{A[\odot]} \eta(b)$.

Free extensions of comeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean algebra $A[\odot]$ such that:

- There is a pBA-morphism $\eta: A \longrightarrow A[\odot]$ satisfying $a \odot b \Longrightarrow \eta(a) \odot_{A[\odot]} \eta(b)$.
- For every partial Boolean algebra B and pBA-morphism $h: A \longrightarrow B$ satisfying $a \odot b \Longrightarrow h(a) \odot_{B} h(b)$, there is a unique homomorphism $\hat{h}: A[\odot] \longrightarrow B$ such that

Free extensions of comeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.

Free extensions of comeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.
- Define inductively:
- a predicate \downarrow (definedness or existence)
- a binary relation \odot (commeasurability)
- a binary relation \equiv (equivalence)

Free extensions of comeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.
- Define inductively:
- a predicate \downarrow (definedness or existence)
- a binary relation \odot (commeasurability)
- a binary relation \equiv (equivalence)
- $T:=\{t \in P \mid t \downarrow\}$.

Free extensions of comeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.
- Define inductively:
- a predicate \downarrow (definedness or existence)
- a binary relation \odot (commeasurability)
- a binary relation \equiv (equivalence)
- $T:=\{t \in P \mid t \downarrow\}$.
- $A[\odot]=T / \equiv$, with obvious definitions for \odot and operations.

The inductive construction

The inductive construction

$$
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot^{\imath}(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)}
$$

The inductive construction

$$
\begin{gathered}
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
\overline{0 \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)} \quad \frac{a \odot_{A} b}{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)}
\end{gathered}
$$

The inductive construction

$$
\begin{gathered}
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
\frac{a \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)}{} \frac{a \odot_{A} b}{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)} \\
\overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \frac{t \downarrow}{\neg t \downarrow}
\end{gathered}
$$

The inductive construction

$$
\begin{gathered}
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
\frac{t \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)}{} \frac{a \odot_{A} b}{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)} \\
\overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \frac{t \downarrow}{\neg t \downarrow} \\
\frac{t \downarrow}{t \odot t, t \odot 0, t \odot 1}
\end{gathered}
$$

The inductive construction

$$
\begin{aligned}
& \frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
& \frac{a \odot_{A} b}{0 \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)} \frac{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)}{} \\
& \overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \quad \frac{t \downarrow}{\neg t \downarrow} \\
& \frac{t \downarrow}{t \odot t, t \odot 0, t \odot 1} \quad \frac{t \odot u}{u \odot t} \quad \frac{t \odot u, t \odot v, u \odot v}{t \wedge u \odot v, t \vee u \odot v} \quad \frac{t \odot u}{\neg t \odot u} \\
& \frac{t \downarrow}{t \equiv t} \quad \frac{t \equiv u}{u \equiv t} \quad \frac{t \equiv u, u \equiv v}{t \equiv v} \quad \frac{t \equiv u, u \odot v}{t \odot v}
\end{aligned}
$$

The inductive construction

$$
\begin{aligned}
& \frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
& \overline{0 \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A)} \quad \overline{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)} \\
& \overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \quad \frac{t \downarrow}{\neg t \downarrow} \\
& \frac{t \downarrow}{t \odot t, t \odot 0, t \odot 1} \quad \frac{t \odot u}{u \odot t} \quad \frac{t \odot u, t \odot v, u \odot v}{t \wedge u \odot v, t \vee u \odot v} \quad \frac{t \odot u}{\neg t \odot u} \\
& \frac{t \downarrow}{t \equiv t} \quad \frac{t \equiv u}{u \equiv t} \quad \frac{t \equiv u, u \equiv v}{t \equiv v} \quad \frac{t \equiv u, u \odot v}{t \odot v} \\
& \frac{t(\vec{x}) \equiv_{\text {Bool }} u(\vec{x}), \bigwedge_{i, j} v_{i} \odot v_{j}}{t(\vec{v}) \equiv u(\vec{v})} \quad \frac{t \equiv t^{\prime}, u \equiv u^{\prime}, t \odot u}{t \wedge u \equiv t^{\prime} \wedge u^{\prime}, t \vee u \equiv t^{\prime} \vee u^{\prime}} \quad \frac{t \equiv u}{\neg t \equiv \neg u}
\end{aligned}
$$

Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability, one forces equality by the additional rule

$$
\frac{a \odot a^{\prime}}{\imath(a) \equiv \imath\left(a^{\prime}\right)}
$$

This builds a pBA $A[\odot, \equiv]$.

Theorem

Let $h: A \longrightarrow B$ be a pBA-morphism such that $a \odot a^{\prime} \Longrightarrow h(a)=h\left(a^{\prime}\right)$. Then there is a unique $\mathbf{p B A}$-morphism $\hat{h}: A[\odot, \equiv] \longrightarrow B$ such that $h=\hat{h} \circ \eta$.

This can be used to give an explicit construction of coequalisers, and hence general colimits, in pBA.

Contextuality

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into
a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$.

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

> | There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into |
| :--- |
| a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$. |

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

> | There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into |
| :--- |
| a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$. |

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

- A can be embedded in a Boolean algebra

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

- A can be embedded in a Boolean algebra
- there is a homomorphism $A \rightarrow B$, for some (non-trivial) Boolean algebra B, whose restriction to each Boolean subalgebra of A is an embedding

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

- A can be embedded in a Boolean algebra
- there is a homomorphism $A \rightarrow B$, for some (non-trivial) Boolean algebra B, whose restriction to each Boolean subalgebra of A is an embedding
- there is a homomorphism $A \rightarrow B$ for some (non-trivial) Boolean algebra B

KS conditions

- The first condition is equivalent to:

There are enough homomorphisms $A \rightarrow 2$ to separate elements of A

KS conditions

- The first condition is equivalent to:

There are enough homomorphisms $A \rightarrow \mathbf{2}$ to separate elements of A

- The third is equivalent to:

There is some homomorphism $A \rightarrow \mathbf{2}$.

KS conditions

- The first condition is equivalent to:

There are enough homomorphisms $A \rightarrow \mathbf{2}$ to separate elements of A

- The third is equivalent to:

There is some homomorphism $A \rightarrow \mathbf{2}$.
Thus the strongest contextuality property is:
There is not even one homomorphism $A \rightarrow \mathbf{2}$

KS conditions

- The first condition is equivalent to:

There are enough homomorphisms $A \rightarrow \mathbf{2}$ to separate elements of A

- The third is equivalent to:

There is some homomorphism $A \rightarrow \mathbf{2}$.
Thus the strongest contextuality property is:

$$
\text { There is not even one homomorphism } A \rightarrow \mathbf{2}
$$

Note the analogy with strong vs. logical contextuality.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.
- The cone from $\mathcal{C}(A)$ to B is also a cone in pBA,
- hence there is a mediating morphism $A \longrightarrow B$!

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.
- The cone from $\mathcal{C}(A)$ to B is also a cone in pBA,
- hence there is a mediating morphism $A \longrightarrow B$!

But note that BA is an equational variety of algebras over Set.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.
- The cone from $\mathcal{C}(A)$ to B is also a cone in pBA,
- hence there is a mediating morphism $A \longrightarrow B$!

But note that BA is an equational variety of algebras over Set.
As such, it is complete and cocomplete, but it also admits the one-element algebra $\mathbf{1}$, in which $0=1$. Note that $\mathbf{1}$ does not have a homomorphism to 2 .

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

We could say that such a diagram is "implicitly contradictory", and in trying to combine all the information in a colimit, we obtain the manifestly contradictory 1 .

Contextuality: locally consistent but globally inconsistent!

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

We could say that such a diagram is "implicitly contradictory", and in trying to combine all the information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem

Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to $\mathbf{2}$.
2. The colimit in BA of the diagram $\mathcal{C}(A)$ of boolean subalgebras of A in BA is $\mathbf{1}$.

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

We could say that such a diagram is "implicitly contradictory", and in trying to combine all the information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem

Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to $\mathbf{2}$.
2. The colimit in BA of the diagram $\mathcal{C}(A)$ of boolean subalgebras of A in BA is $\mathbf{1}$.
3. $A\left[A^{2}\right]=1$.

Contextuality in partial Boolean algebras

An advantage of partial Boolean algebras is that the K-S property provides an intrinsic, logical approach to defining state-independent contextuality.

Contextuality in partial Boolean algebras

An advantage of partial Boolean algebras is that the K-S property provides an intrinsic, logical approach to defining state-independent contextuality.

But where do states come in?

States

Definition

A state or probability valuation on a partial Boolean algebra A is a map $\nu: A \longrightarrow[0,1]$ such that:

1. $\nu(0)=0$;
2. $\nu(\neg x)=1-\nu(x)$;
3. for all $x, y \in A$ with $x \odot y, \nu(x \vee y)+\nu(x \wedge y)=\nu(x)+\nu(y)$.

States

Definition

A state or probability valuation on a partial Boolean algebra A is a map $\nu: A \longrightarrow[0,1]$ such that:

1. $\nu(0)=0$;
2. $\nu(\neg x)=1-\nu(x)$;
3. for all $x, y \in A$ with $x \odot y, \nu(x \vee y)+\nu(x \wedge y)=\nu(x)+\nu(y)$.

Proposition

States can be characterised as the maps $\nu: A \longrightarrow[0,1]$ such that, for every Boolean subalgebra B of A, the restriction of ν to B is a finitely additive probability measure on B.

We can define a state $\nu: A \rightarrow[0,1]$ to be probabilically non-contextual if ν extends to $A\left[A^{2}\right]$; that is, there is a state $\hat{\nu}: A\left[A^{2}\right] \rightarrow[0,1]$ such that $\nu=\hat{\nu} \circ \eta$.

We can define a state $\nu: A \rightarrow[0,1]$ to be probabilically non-contextual if ν extends to $A\left[A^{2}\right]$; that is, there is a state $\hat{\nu}: A\left[A^{2}\right] \rightarrow[0,1]$ such that $\nu=\hat{\nu} \circ \eta$.

By the universal property of $A\left[A^{2}\right]$, this is equivalent to asking that there is some Boolean algebra B, morphism $h: A \rightarrow B$, and state $\hat{\nu}: B \rightarrow[0,1]$ such that $\nu=\hat{\nu} \circ \eta$.

We can define a state $\nu: A \rightarrow[0,1]$ to be probabilically non-contextual if ν extends to $A\left[A^{2}\right]$; that is, there is a state $\hat{\nu}: A\left[A^{2}\right] \rightarrow[0,1]$ such that $\nu=\hat{\nu} \circ \eta$.

By the universal property of $A\left[A^{2}\right]$, this is equivalent to asking that there is some Boolean algebra B, morphism $h: A \rightarrow B$, and state $\hat{\nu}: B \rightarrow[0,1]$ such that $\nu=\hat{\nu} \circ \eta$.

Note that if A is $\mathrm{K}-\mathrm{S}, A\left[A^{2}\right]=\mathbf{1}$, and there is no state on $\mathbf{1}$.

Connection with the sheaf-theoretic approach

Given a 'graphical measurement scenario' (where compatibility is specified simply by a binary relation), we can construct a partial Boolean algebra such that:

Connection with the sheaf-theoretic approach

Given a 'graphical measurement scenario' (where compatibility is specified simply by a binary relation), we can construct a partial Boolean algebra such that:

- states correspond to no-disturbance/no-signalling empirical models.

Connection with the sheaf-theoretic approach

Given a 'graphical measurement scenario' (where compatibility is specified simply by a binary relation), we can construct a partial Boolean algebra such that:

- states correspond to no-disturbance/no-signalling empirical models.
- there are corresponding formulations of

Connection with the sheaf-theoretic approach

Given a 'graphical measurement scenario' (where compatibility is specified simply by a binary relation), we can construct a partial Boolean algebra such that:

- states correspond to no-disturbance/no-signalling empirical models.
- there are corresponding formulations of
- probabilistic contextuality

Connection with the sheaf-theoretic approach

Given a 'graphical measurement scenario' (where compatibility is specified simply by a binary relation), we can construct a partial Boolean algebra such that:

- states correspond to no-disturbance/no-signalling empirical models.
- there are corresponding formulations of
- probabilistic contextuality
- logical contextuality

Connection with the sheaf-theoretic approach

Given a 'graphical measurement scenario' (where compatibility is specified simply by a binary relation), we can construct a partial Boolean algebra such that:

- states correspond to no-disturbance/no-signalling empirical models.
- there are corresponding formulations of
- probabilistic contextuality
- logical contextuality
- strong contextuality.

Exclusivity principles for partial Boolean algebras

Exclusivity principles for partial Boolean algebras

- No-distubance ensures that the probabilistic outcome of a compatible subset of measurements is independent of which other compatible measurements are performed.

Exclusivity principles for partial Boolean algebras

- No-distubance ensures that the probabilistic outcome of a compatible subset of measurements is independent of which other compatible measurements are performed.
- This is satisfied by probabilities that can be realised in quantum mechanics.

Exclusivity principles for partial Boolean algebras

- No-distubance ensures that the probabilistic outcome of a compatible subset of measurements is independent of which other compatible measurements are performed.
- This is satisfied by probabilities that can be realised in quantum mechanics.
- However, this condition is much weaker than quantum realisability (e.g. PR box).

Exclusivity principles for partial Boolean algebras

- No-distubance ensures that the probabilistic outcome of a compatible subset of measurements is independent of which other compatible measurements are performed.
- This is satisfied by probabilities that can be realised in quantum mechanics.
- However, this condition is much weaker than quantum realisability (e.g. PR box).
- A lot of effort has gone into trying to characterise the set of quantum behaviours by imposing additional, physically motivated conditions, leading to various approximations from above to this quantum set.

Exclusivity principles for partial Boolean algebras

- No-distubance ensures that the probabilistic outcome of a compatible subset of measurements is independent of which other compatible measurements are performed.
- This is satisfied by probabilities that can be realised in quantum mechanics.
- However, this condition is much weaker than quantum realisability (e.g. PR box).
- A lot of effort has gone into trying to characterise the set of quantum behaviours by imposing additional, physically motivated conditions, leading to various approximations from above to this quantum set.
- We consider two exclusivity principles:
- one acts at the 'logical' level, i.e. the level of events or elements of a partial Boolean algebra
- the other acts at the 'probabilistic' level, applying to states of a partial Boolean algebra.

Exclusive events

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Exclusive events

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (Exclusive events)

Two elements $a, b \in A$ are said to be exclusive, written $a \perp b$, if there is a $c \in A$ such that $a \odot c$ with $a \leq c$ and $b \odot c$ with $b \leq \neg c$.

Exclusive events

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (Exclusive events)

Two elements $a, b \in A$ are said to be exclusive, written $a \perp b$, if there is a $c \in A$ such that $a \odot c$ with $a \leq c$ and $b \odot c$ with $b \leq \neg c$.

- Note that $a \perp b$ is a weaker requirement than $a \wedge b=0$.
- The two would be equivalent in a Boolean algebra.
- But in a general partial Boolean algebra, there might be exclusive events that are not commeasurable (and for which, therefore, the \wedge operation is not defined).

LEP and PEP

LEP and PEP

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are logically exclusive are also commeasurable, i.e. if $\perp \subseteq \odot$.

LEP and PEP

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are logically exclusive are also commeasurable, i.e. if $\perp \subseteq \odot$.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras satisfying LEP.

LEP and PEP

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are logically exclusive are also commeasurable, i.e. if $\perp \subseteq \odot$.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras satisfying LEP.

Definition

A state $\nu: A \longrightarrow[0,1]$ on A is said to satisfy the probabilistic exclusivity principle (PEP) if for any set $S \subseteq A$ of pairwise exclusive elements, i.e. such that $\forall a, b \in S .(a=b \vee a \perp b)$, then $\sum_{a \in S} \nu(a) \leq 1$.

LEP and PEP

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are logically exclusive are also commeasurable, i.e. if $\perp \subseteq \odot$.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras satisfying LEP.

Definition

A state $\nu: A \longrightarrow[0,1]$ on A is said to satisfy the probabilistic exclusivity principle (PEP) if for any set $S \subseteq A$ of pairwise exclusive elements, i.e. such that $\forall a, b \in S .(a=b \vee a \perp b)$, then $\sum_{a \in S} \nu(a) \leq 1$.
A partial Boolean algebra is said to satisfy PEP if all of its states satisfy PEP.

LEP and PEP

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are logically exclusive are also commeasurable, i.e. if $\perp \subseteq \odot$.

We write epBA for the full subcategory of pBA whose objects are partial Boolean algebras satisfying LEP.

Definition

A state $\nu: A \longrightarrow[0,1]$ on A is said to satisfy the probabilistic exclusivity principle (PEP) if for any set $S \subseteq A$ of pairwise exclusive elements, i.e. such that $\forall a, b \in S .(a=b \vee a \perp b)$, then $\sum_{a \in S} \nu(a) \leq 1$.

A partial Boolean algebra is said to satisfy PEP if all of its states satisfy PEP.

- In a Boolean algebra, $\sum_{a \in S} \nu(a) \leq 1$ for any set S of elements st $\forall a, b \in S . a \wedge b=0$.

LEP vs PEP

Proposition (LEP \Rightarrow PEP)
Let A be a partial Boolean algebra satisfying LEP. Then, any state on A satisfies PEP.

Proposition (LEP \Rightarrow PEP)
Let A be a partial Boolean algebra satisfying LEP. Then, any state on A satisfies PEP.

- In a general partial Boolean algebra A, not all states need satisfy PEP.
- E.g.: pba of $(4,2,2)$ Bell scenario, state: tensor product of two PR boxes.

LEP vs PEP

Proposition (LEP \Rightarrow PEP)

Let A be a partial Boolean algebra satisfying LEP. Then, any state on A satisfies PEP.

- In a general partial Boolean algebra A, not all states need satisfy PEP.
- E.g.: pba of $(4,2,2)$ Bell scenario, state: tensor product of two PR boxes.
- But we can construct a new pba whose states yield states of A that satisfy PEP.

LEP vs PEP

Proposition (LEP \Rightarrow PEP)

Let A be a partial Boolean algebra satisfying LEP. Then, any state on A satisfies PEP.

- In a general partial Boolean algebra A, not all states need satisfy PEP.
- E.g.: pba of $(4,2,2)$ Bell scenario, state: tensor product of two PR boxes.
- But we can construct a new pba whose states yield states of A that satisfy PEP.

Theorem
A state $\nu: A \longrightarrow[0,1]$ satisfies PEP if there is a state $\hat{\nu}$ of $A[\perp]$ such that

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.
- But we can freely generate, from any given pba, a new pba satisfying LEP.

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.
- But we can freely generate, from any given pba, a new pba satisfying LEP.
- This LEP-isation is analogous to e.g. the way one can 'abelianise' any group, or use Stone-Čech compactification to form a compact Hausdorff space from any topological space.

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.
- But we can freely generate, from any given pba, a new pba satisfying LEP.
- This LEP-isation is analogous to e.g. the way one can 'abelianise' any group, or use Stone-Čech compactification to form a compact Hausdorff space from any topological space.

Theorem

The category epBA is a reflective subcategory of pBA, i.e. the inclusion functor $I:$ epBA \longrightarrow pBA has a left adjoint $X:$ pBA \longrightarrow epBA.

A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra $X(A)=A[\perp]^{*}$ satisfying $L E P$ such that:

- there is a homomorphism $\eta: A \longrightarrow A[\perp]^{*}$;
- for any homomorphism $h: A \longrightarrow B$ where B is a partial Boolean algebra B satisfying LEP, there is a unique homomorphism $\hat{h}: A[\perp]^{*} \longrightarrow B$ such that:

A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra $X(A)=A[\perp]^{*}$ satisfying $L E P$ such that:

- there is a homomorphism $\eta: A \longrightarrow A[\perp]^{*}$;
- for any homomorphism $h: A \longrightarrow B$ where B is a partial Boolean algebra B satisfying LEP, there is a unique homomorphism $\hat{h}: A[\perp]^{*} \longrightarrow B$ such that:

Proof. Adapt our earlier construction, adding the following rule to the inductive system:

$$
\frac{u \wedge t \equiv u, v \wedge \neg t \equiv v}{u \odot v}
$$

Tensor products of partial Boolean algebras

A (first) tensor product by generators and relations

Heunen \& van den Berg show that pBA has a monoidal structure:

$$
A \otimes B:=\operatorname{colim}\{C+D \mid C \in \mathcal{C}(A), D \in \mathcal{C}(B)\}
$$

where $C+D$ is the coproduct of Boolean algebras.

A (first) tensor product by generators and relations

Heunen \& van den Berg show that pBA has a monoidal structure:

$$
A \otimes B:=\operatorname{colim}\{C+D \mid C \in \mathcal{C}(A), D \in \mathcal{C}(B)\}
$$

where $C+D$ is the coproduct of Boolean algebras.
Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the Adjoint Functor Theorem.

A (first) tensor product by generators and relations

Heunen \& van den Berg show that pBA has a monoidal structure:

$$
A \otimes B:=\operatorname{colim}\{C+D \mid C \in \mathcal{C}(A), D \in \mathcal{C}(B)\}
$$

where $C+D$ is the coproduct of Boolean algebras.
Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.

Proposition

Let A and B be partial Boolean algebras. Then

$$
A \otimes B \cong(A \oplus B)[\oplus]
$$

where \oplus is the relation on the carrier set of $A \oplus B$ given by $\imath(a) \oplus \jmath(b)$ for all $a \in A$ and $b \in B$.

A more expressive tensor product

- There functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$

A more expressive tensor product

- There functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow 2$,

A more expressive tensor product

- There functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$

A more expressive tensor product

- There functor $\mathbf{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.

A more expressive tensor product

- There functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.
- But, from Kochen (2015), 'A reconstruction of quantum mechanics':
- The images of $\mathrm{P}(\mathcal{H})$ and $\mathrm{P}(\mathcal{K})$ generate $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$, for any finite-dimensional \mathcal{H} and \mathcal{K}.
- This is used to justify the claim contradicted above.

A more expressive tensor product

- There functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by $K S$, there are no homomorphisms $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow 2$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.
- But, from Kochen (2015), 'A reconstruction of quantum mechanics':
- The images of $\mathrm{P}(\mathcal{H})$ and $\mathrm{P}(\mathcal{K})$ generate $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$, for any finite-dimensional \mathcal{H} and \mathcal{K}.
- This is used to justify the claim contradicted above.
- The gap is that more relations hold in $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ than in $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K})$.

A more expressive tensor product

- There functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.
- But, from Kochen (2015), 'A reconstruction of quantum mechanics':
- The images of $\mathrm{P}(\mathcal{H})$ and $\mathrm{P}(\mathcal{K})$ generate $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$, for any finite-dimensional \mathcal{H} and \mathcal{K}.
- This is used to justify the claim contradicted above.
- The gap is that more relations hold in $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ than in $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K})$.
- Nevertheless, this result is suggestive.

It poses the challenge of finding a stronger notion of tensor product.

A more expressive tensor product (ctd)

- In constructing $A \otimes B=(A \oplus B)[\odot]$ by the inductive rules, if $\vdash t \downarrow$, then $\vdash u \downarrow$ for every subterm u of t.

A more expressive tensor product (ctd)

- In constructing $A \otimes B=(A \oplus B)[\odot]$ by the inductive rules, if $\vdash t \downarrow$, then $\vdash u \downarrow$ for every subterm u of t.
- This is too strong to capture the full logic of the Hilbert space tensor product.

A more expressive tensor product (ctd)

- In constructing $A \otimes B=(A \oplus B)[\odot]$ by the inductive rules, if $\vdash t \downarrow$, then $\vdash u \downarrow$ for every subterm u of t.
- This is too strong to capture the full logic of the Hilbert space tensor product.
- Consider projectors $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$.
- to show that they are orthogonal, we have a disjunctive requirement: $p_{1} \perp q_{1}$ or $p_{2} \perp q_{2}$.
- we are entitled to conclude that $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$ are commeasurable, even though (say) p_{2} and q_{2} are not

A more expressive tensor product (ctd)

- In constructing $A \otimes B=(A \oplus B)[\Phi]$ by the inductive rules, if $\vdash t \downarrow$, then $\vdash u \downarrow$ for every subterm u of t.
- This is too strong to capture the full logic of the Hilbert space tensor product.
- Consider projectors $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$.
- to show that they are orthogonal, we have a disjunctive requirement: $p_{1} \perp q_{1}$ or $p_{2} \perp q_{2}$.
- we are entitled to conclude that $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$ are commeasurable, even though (say) p_{2} and q_{2} are not

Indeed, the idea that propositions can be defined on quantum systems even though subexpressions are not is emphasized by Kochen.

Logical exclusivity tensor product

Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.
This amounts to composing with the reflection to epBA; $\boxtimes:=X \circ \otimes$. Explicitly, we define the logical exclusivity tensor product by

$$
A \boxtimes B=(A \otimes B)[\perp]^{*}=(A \oplus B)[\odot][\perp]^{*} .
$$

Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.
This amounts to composing with the reflection to epBA; $\boxtimes:=X \circ \otimes$. Explicitly, we define the logical exclusivity tensor product by

$$
A \boxtimes B=(A \otimes B)[\perp]^{*}=(A \oplus B)[\odot][\perp]^{*} .
$$

- This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor wrt this tensor product.
- It remains to be seen how close it gets us to the full Hilbert space tensor product.

A limitative result

A limitative result

- Can extending commeasurability by a relation © induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)
Let A be a partial Boolean algebra, and $\odot \subseteq A^{2}$ a relation on A. Then A is $K-S$ if and only if $A[\odot]$ is $K-S$.

A limitative result

- Can extending commeasurability by a relation \odot induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)
Let A be a partial Boolean algebra, and $\odot \subseteq A^{2}$ a relation on A. Then A is $K-S$ if and only if $A[\odot]$ is $K-S$.

Corollary
If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{k}$.

A limitative result

- Can extending commeasurability by a relation \odot induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra, and $\odot \subseteq A^{2}$ a relation on A. Then A is $K-S$ if and only if $A[\odot]$ is $K-S$.

Corollary

If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{k}$.
Under the conjecture that $A[\perp]^{*}$ coincides with iterating $A[\perp]$ to a fixpoint, this would imply that the LE tensor product $A \boxtimes B$ never induces a K-S paradox if none was present in A or B.

A limitative result

- Can extending commeasurability by a relation © induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra, and $\odot \subseteq A^{2}$ a relation on A. Then A is $K-S$ if and only if $A[\odot]$ is $K-S$.

Corollary

If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{k}$.
Under the conjecture that $A[\perp]^{*}$ coincides with iterating $A[\perp]$ to a fixpoint, this would imply that the LE tensor product $A \boxtimes B$ never induces a K-S paradox if none was present in A or B. In particular, $\mathrm{P}\left(\mathbb{C}^{2}\right) \boxtimes \mathrm{P}\left(\mathbb{C}^{2}\right)$ does not have the K-S property.

A limitative result

- Can extending commeasurability by a relation © induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra, and $\odot \subseteq A^{2}$ a relation on A. Then A is $K-S$ if and only if $A[\odot]$ is $K-S$.

Corollary

If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{k}$.
Under the conjecture that $A[\perp]^{*}$ coincides with iterating $A[\perp]$ to a fixpoint, this would imply that the LE tensor product $A \boxtimes B$ never induces a K-S paradox if none was present in A or B.

In particular, $\mathrm{P}\left(\mathbb{C}^{2}\right) \boxtimes \mathrm{P}\left(\mathbb{C}^{2}\right)$ does not have the K-S property.
So, we need a stronger tensor product to track this emergent complexity in the quantum case.

Questions...

