Partial Boolean algebras: The logic of contextuality

Samson Abramsky

samson.abramsky@cs.ox.ac.uk

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

https://qpl2021.eu/

QUANTUM PHYSICS AND LOGIC

is an annual conference that brings together researchers working on mathematical foundations of quantum physics, quantum computing, and related areas, with a focus on structural perspectives and the use of logical tools, ordered algebraic and categorytheoretic structures, formal languages, semantical methods, and other computer science techniques applied to the study of physical behaviour in general. Work that applies structures and methods inspired by quantum theory to other fields (including computer science) is also welcome.

Important dates

Paper submission deadline
Author notification
Early registration deadline
Final papers ready
Conference

February 12th, 2021
March 31st, 2021
May 14th, 2021
May 28th, 2021
June 7th to lith, 2021

Preamble

Quantum foundations

- Quantum mechanics is weird?

Quantum foundations

- Quantum mechanics is weird?

Bohr: "if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it"

Quantum foundations

- Quantum mechanics is weird?

Bohr: "if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it"

- It strikes at the heart of how we reason: logic and probability.

Quantum foundations

- Quantum mechanics is weird?

Bohr: "if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it"

- It strikes at the heart of how we reason: logic and probability.

- Einstein-Podolsky-Rosen (1935): "spooky action at a distance" \rightsquigarrow QM must be incomplete!

Quantum foundations

- Quantum mechanics is weird?

Bohr: "if anybody says he can think about quantum theory without getting giddy it merely shows that he hasn't understood the first thing about it"

- It strikes at the heart of how we reason: logic and probability.

- Einstein-Podolsky-Rosen (1935): "spooky action at a distance" \rightsquigarrow QM must be incomplete!
- Bell-Kochen-Specker (60s): Non-locality and contextuality as fundamental empirical phenomena rather than shortcomings of the formalism.

Quantum foundations and quantum informatics

Advent of quantum information and computation (90s)
\rightsquigarrow Renewed interest in quantum foundations

Quantum foundations and quantum informatics

Advent of quantum information and computation (90s)
\rightsquigarrow Renewed interest in quantum foundations

- A central question is to characterise quantum advantage

Quantum foundations and quantum informatics

Advent of quantum information and computation (90s)
\rightsquigarrow Renewed interest in quantum foundations

- A central question is to characterise quantum advantage
- Focus on non-classical aspects of quantum theory

> Not a bug but a feature!

Contextuality

- Contextuality is a key signature of non-classicality.
- Non-locality (Bell's theorem) is a special case.

Contextuality

- Contextuality is a key signature of non-classicality.
- Non-locality (Bell's theorem) is a special case.
- Related to many instances of quantum advantage in computation and informatics.

Contextuality

- Contextuality is a key signature of non-classicality.
- Non-locality (Bell's theorem) is a special case.
- Related to many instances of quantum advantage in computation and informatics.
- Empirical predictions of quantum mechanics are incompatible with all observables being assigned values simultaneously.

Contextuality

- Contextuality is a key signature of non-classicality.
- Non-locality (Bell's theorem) is a special case.
- Related to many instances of quantum advantage in computation and informatics.
- Empirical predictions of quantum mechanics are incompatible with all observables being assigned values simultaneously.
- More abstractly: data that are locally consistent but globally inconsistent.

Summary

- Our point of departure is the seminal paper:

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

Summary

- Our point of departure is the seminal paper:

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- This contains some logical aspects largely overlooked in subsequent literature

Summary

- Our point of departure is the seminal paper:

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- This contains some logical aspects largely overlooked in subsequent literature
- This is work in progress. Many open questions.
- Paper in CSL 2021: arXiv:2011.03064 [quant-ph]
- This talk: focus on logical aspects, ignore e.g. probabilistic.
- Contextuality in logical form
- Towards tracking the quantum tensor product
- Logical exclusivity principle
- Free extension of commeasurability

Logic and quantum mechanics

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.
Classical mechanics

- Described by Commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.
Classical mechanics

- Described by Commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.
Classical mechanics

- Described by Commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.
Classical mechanics

- Described by Commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- Described by noncommutative C^{*}-algebras or von Neumann algebras.
- By GNS, algebras of bounded operators on a Hilbert space \mathcal{H}, i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.
Classical mechanics

- Described by Commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- Described by noncommutative C^{*}-algebras or von Neumann algebras.
- By GNS, algebras of bounded operators on a Hilbert space \mathcal{H}, i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.
- Measurements are self-adjoint operators.

From classical to quantum

John von Neumann (1932), 'Mathematische Grundlagen der Quantenmechanik'.
Classical mechanics

- Described by Commutative C^{*}-algebras or von Neumann algebras.
- By Gel'fand duality, these are algebras of continuous (or measurable) functions on topological spaces, the state spaces.
- All measurements have well-defined values on any state.
- Properties or propositions are identified with (measurable) subsets of the state space.

Quantum mechanics

- Described by noncommutative C^{*}-algebras or von Neumann algebras.
- By GNS, algebras of bounded operators on a Hilbert space \mathcal{H}, i.e. subalgebras of $\mathcal{B}(\mathcal{H})$.
- Measurements are self-adjoint operators.
- Quantum properties or propositions are projectors:

$$
p: \mathcal{H} \rightarrow \mathcal{H} \quad \text { s.t. } \quad p=p^{\dagger}=p^{2}
$$

which correspond to closed subspaces of \mathcal{H}.

Quantum physics and logic

Traditional quantum logic
Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM .

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM.
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM.
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$.

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM.
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$.
- Sits unnaturally with tensor product.

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM .
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$.
- Sits unnaturally with tensor product.
- Only commuting measurements can be performed together. So, what is the operational meaning of $p \wedge q$,

Quantum physics and logic

Traditional quantum logic

Birkhoff \& von Neumann (1936), 'The logic of quantum mechanics'.

- The lattice $\mathrm{P}(\mathcal{H})$, of projectors on a Hilbert space \mathcal{H}, as a non-classical logic for QM.
- Interpret \wedge (infimum) and \vee (supremum) as logical operations.
- Distributivity fails: $p \wedge(q \vee r) \neq(p \wedge q) \vee(p \wedge r)$.
- Sits unnaturally with tensor product.
- Only commuting measurements can be performed together. So, what is the operational meaning of $p \wedge q$, when p and q do not commute?

Quantum physics and logic

An alternative approach
Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

Quantum physics and logic

An alternative approach

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- The seminal work on contextuality used partial Boolean algebras
- Only admit physically meaningful operations.
- Represent incompatibility by partiality

Quantum physics and logic

An alternative approach

Kochen \& Specker (1965), 'The problem of hidden variables in quantum mechanics'.

- The seminal work on contextuality used partial Boolean algebras
- Only admit physically meaningful operations.
- Represent incompatibility by partiality

Kochen (2015), 'A reconstruction of quantum mechanics'.

- Kochen develops a large part of foundations of quantum theory in this framework.

Partial Boolean algebras

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$
satisfying the usual axioms: $\langle A, \vee, 0\rangle$ and $\langle A, \wedge, 1\rangle$ are commutative monoids, \vee and \wedge distribute over each other, $a \vee \neg a=1$ and $a \wedge \neg a=0$.

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$
satisfying the usual axioms: $\langle A, \vee, 0\rangle$ and $\langle A, \wedge, 1\rangle$ are commutative monoids, \vee and \wedge distribute over each other, $a \vee \neg a=1$ and $a \wedge \neg a=0$.
E.g.: $\langle\mathcal{P}(X), \varnothing, X, \cup \cap\rangle$

Boolean algebras

Boolean algebra $\langle A, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- constants $0,1 \in A$
- a unary operation $\neg: A \longrightarrow A$
- binary operations $\vee, \wedge: A^{2} \longrightarrow A$
satisfying the usual axioms: $\langle A, \vee, 0\rangle$ and $\langle A, \wedge, 1\rangle$ are commutative monoids, \vee and \wedge distribute over each other, $a \vee \neg a=1$ and $a \wedge \neg a=0$.
E.g.: $\langle\mathcal{P}(X), \varnothing, X, \cup \cap\rangle$, in particular $\mathbf{2}=\{0,1\} \cong \mathcal{P}(\{\star\})$.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the given operations.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the given operations.
E.g.: $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}.

Partial Boolean algebras

Partial Boolean algebra $\langle A, \odot, 0,1, \neg, \vee, \wedge\rangle$:

- a set A
- a reflexive, symmetric binary relation \odot on A, read commeasurability or compatibility
- constants $0,1 \in A$
- (total) unary operation $\neg: A \longrightarrow A$
- (partial) binary operations $\vee, \wedge: \odot \longrightarrow A$
such that every set S of pairwise-commeasurable elements is contained in a set T of pairwisecommeasurable elements which is a Boolean algebra under the restriction of the given operations.
E.g.: $\mathrm{P}(\mathcal{H})$, the projectors on a Hilbert space \mathcal{H}.

Conjunction, i.e. product of projectors, becomes partial, defined only on commuting projectors.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

Heunen \& van der Berg (2012), 'Non-commutativity as a colimit'.

- Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

Heunen \& van der Berg (2012), 'Non-commutativity as a colimit'.

- Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.
- Coproduct: $A \oplus B$ is the disjoint union of A and B with identifications $0_{A}=0_{B}$ and $1_{A}=1_{B}$. No other commeasurabilities hold between elements of A and elements of B.

The category pBA

Morphisms of partial Boolean operations are maps preserving commeasurability, and the operations wherever defined. This gives a category pBA.

Heunen \& van der Berg (2012), 'Non-commutativity as a colimit'.

- Every partial Boolean algebra is the colimit (in pBA) of its Boolean subalgebras.
- Coproduct: $A \oplus B$ is the disjoint union of A and B with identifications $0_{A}=0_{B}$ and $1_{A}=1_{B}$. No other commeasurabilities hold between elements of A and elements of B.
- Coequalisers, and general colimits: shown to exist via the Adjoint Functor Theorem.

The category pBA

classifying toposes (6.56). One's first reaction on seeing this theorem is to admire its elegance and generality; the second reaction (which comes quite a long time later) is to realize its fundamental uselessness-a quality which, by the way, it shares with the General Adjoint Functor Theorem. For the

The category pBA

classifying toposes (6.56). One's first reaction on seeing this theorem is to admire its elegance and generality; the second reaction (which comes quite a long time later) is to realize its fundamental uselessness-a quality which, by the way, it shares with the General Adjoint Functor Theorem. For the

- We give a direct construction of colimits.

The category pBA

classifying toposes (6.56). One's first reaction on seeing this theorem is to admire its elegance and generality; the second reaction (which comes quite a long time later) is to realize its fundamental uselessness-a quality which, by the way, it shares with the General Adjoint Functor Theorem. For the

- We give a direct construction of colimits.
- More generally, we show how to freely generate from a given partial Boolean algebra a new one satisfying prescribed additional commeasurability relations.

Free extensions of commeasurability

Free extensions of commeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean algebra $A[\odot]$ such that:

Free extensions of commeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean algebra $A[\odot]$ such that:

- There is a pBA-morphism $\eta: A \longrightarrow A[\odot]$ satisfying $a \odot b \Longrightarrow \eta(a) \odot_{A[\odot]} \eta(b)$.

Free extensions of commeasurability

Theorem

Given a partial Boolean algebra A and a binary relation © on A, there is a partial Boolean algebra $A[\odot]$ such that:

- There is a pBA-morphism $\eta: A \longrightarrow A[\odot]$ satisfying $a \odot b \Longrightarrow \eta(a) \odot_{A[\odot]} \eta(b)$.
- For every partial Boolean algebra B and pBA-morphism $h: A \longrightarrow B$ satisfying $a \odot b \Longrightarrow h(a) \odot_{B} h(b)$, there is a unique homomorphism $\hat{h}: A[\odot] \longrightarrow B$ such that

Free extensions of commeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.

Free extensions of commeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.
- Define inductively:
- a predicate \downarrow (definedness or existence)
- a binary relation \odot (commeasurability)
- a binary relation \equiv (equivalence)

Free extensions of commeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.
- Define inductively:
- a predicate \downarrow (definedness or existence)
- a binary relation \odot (commeasurability)
- a binary relation \equiv (equivalence)
- $T:=\{t \in P \mid t \downarrow\}$.

Free extensions of commeasurability

The result is proved constructively, by giving an inductive system of proof rules for commeasurability and equivalence relations over a set of syntactic terms generated from A.

- Generators $G:=\{\imath(a) \mid a \in A\}$.
- Pre-terms P : closure of G under Boolean operations and constants.
- Define inductively:
- a predicate \downarrow (definedness or existence)
- a binary relation \odot (commeasurability)
- a binary relation \equiv (equivalence)
- $T:=\{t \in P \mid t \downarrow\}$.
- $A[\odot]=T / \equiv$, with obvious definitions for \odot and operations.

The inductive construction

The inductive construction

$$
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot^{\imath}(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)}
$$

The inductive construction

$$
\begin{gathered}
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
\overline{0 \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)} \quad \overline{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)}
\end{gathered}
$$

The inductive construction

$$
\begin{gathered}
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
\overline{0 \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)} \frac{a \odot_{A} b}{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)} \\
\overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \frac{t \downarrow}{\neg t \downarrow}
\end{gathered}
$$

The inductive construction

$$
\begin{gathered}
\frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
\frac{t \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)}{} \frac{a \odot_{A} b}{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)} \\
\overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \frac{t \downarrow}{\neg t \downarrow} \\
\frac{t \downarrow}{t \odot t, t \odot 0, t \odot 1}
\end{gathered}
$$

The inductive construction

$$
\begin{aligned}
& \frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
& \frac{a \odot_{A} b}{0 \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath(\neg A a)} \frac{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)}{} \\
& \overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \quad \frac{t \downarrow}{\neg t \downarrow} \\
& \frac{t \downarrow}{t \odot t, t \odot 0, t \odot 1} \quad \frac{t \odot u}{u \odot t} \quad \frac{t \odot u, t \odot v, u \odot v}{t \wedge u \odot v, t \vee u \odot v} \quad \frac{t \odot u}{\neg t \odot u} \\
& \frac{t \downarrow}{t \equiv t} \quad \frac{t \equiv u}{u \equiv t} \quad \frac{t \equiv u, u \equiv v}{t \equiv v} \quad \frac{t \equiv u, u \odot v}{t \odot v}
\end{aligned}
$$

The inductive construction

$$
\begin{aligned}
& \frac{a \in A}{\imath(a) \downarrow} \quad \frac{a \odot_{A} b}{\imath(a) \odot \imath(b)} \quad \frac{a \odot b}{\imath(a) \odot \imath(b)} \\
& \overline{0 \equiv \imath\left(0_{A}\right), 1 \equiv \imath\left(1_{A}\right), \neg \imath(a) \equiv \imath\left(\neg_{A} a\right)} \quad \overline{\imath(a) \wedge \imath(b) \equiv \imath\left(a \wedge_{A} b\right), \imath(a) \vee \imath(b) \equiv \imath\left(a \vee_{A} b\right)} \\
& \overline{0 \downarrow, 1 \downarrow} \quad \frac{t \odot u}{t \wedge u \downarrow, t \vee u \downarrow} \quad \frac{t \downarrow}{\neg t \downarrow} \\
& \frac{t \downarrow}{t \odot t, t \odot 0, t \odot 1} \quad \frac{t \odot u}{u \odot t} \quad \frac{t \odot u, t \odot v, u \odot v}{t \wedge u \odot v, t \vee u \odot v} \quad \frac{t \odot u}{\neg t \odot u} \\
& \frac{t \downarrow}{t \equiv t} \quad \frac{t \equiv u}{u \equiv t} \quad \frac{t \equiv u, u \equiv v}{t \equiv v} \quad \frac{t \equiv u, u \odot v}{t \odot v} \\
& \frac{\varphi(\vec{x}) \equiv_{\text {Bool }} \psi(\vec{x}), \bigwedge_{i, j} u_{i} \odot u_{j}}{\varphi(\vec{u}) \equiv \psi(\vec{u})} \quad \frac{t \equiv t^{\prime}, u \equiv u^{\prime}, t \odot u}{t \wedge u \equiv t^{\prime} \wedge u^{\prime}, t \vee u \equiv t^{\prime} \vee u^{\prime}} \quad \frac{t \equiv u}{\neg t \equiv \neg u}
\end{aligned}
$$

Coequalisers and colimits

A variation of this construction is also useful, where instead of just forcing commeasurability, one forces equality by the additional rule

$$
\frac{a \odot a^{\prime}}{\imath(a) \equiv \imath\left(a^{\prime}\right)}
$$

This builds a pBA $A[\odot, \equiv]$.

Theorem

Let $h: A \longrightarrow B$ be a pBA-morphism such that $a \odot a^{\prime} \Longrightarrow h(a)=h\left(a^{\prime}\right)$. Then there is a unique $\mathbf{p B A}$-morphism $\hat{h}: A[\odot, \equiv] \longrightarrow B$ such that $h=\hat{h} \circ \eta$.

This is used to give an explicit construction of coequalisers, and hence general colimits, in pBA.

Contextuality

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into
a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$.

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

> | There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into |
| :--- |
| a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$. |

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

> | There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into |
| :--- |
| a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$. |

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

- A can be embedded in a Boolean algebra

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

- A can be embedded in a Boolean algebra
- there is a homomorphism $A \longrightarrow B$, for some (non-trivial) Boolean algebra B, whose restriction to each Boolean subalgebra of A is an embedding

Kochen-Specker contextuality property

The original KS formulation of contextuality was:

There is no embedding of the partial Boolean algebra of projectors $\mathrm{P}(\mathcal{H})$ into a (non-trivial) Boolean algebra when $\operatorname{dim} \mathcal{H} \geq 3$.

In fact, KS considered a hierarchy of increasingly weaker forms of non-contextuality for a pba A :

- A can be embedded in a Boolean algebra
- there is a homomorphism $A \longrightarrow B$, for some (non-trivial) Boolean algebra B, whose restriction to each Boolean subalgebra of A is an embedding
- there is a homomorphism $A \longrightarrow B$ for some (non-trivial) Boolean algebra B

KS conditions

- The first condition is equivalent to:

There are enough homomorphisms $A \rightarrow \mathbf{2}$ to separate elements of A

KS conditions

- The first condition is equivalent to: There are enough homomorphisms $A \rightarrow \mathbf{2}$ to separate elements of A
- The third is equivalent to:

There is some homomorphism $A \rightarrow \mathbf{2}$.

KS conditions

- The first condition is equivalent to:

There are enough homomorphisms $A \rightarrow \mathbf{2}$ to separate elements of A

- The third is equivalent to:

There is some homomorphism $A \rightarrow \mathbf{2}$.
Thus the strongest contextuality property is:

$$
\text { There is not even one homomorphism } A \rightarrow \mathbf{2}
$$

KS conditions

- The first condition is equivalent to:

There are enough homomorphisms $A \rightarrow \mathbf{2}$ to separate elements of A

- The third is equivalent to:

There is some homomorphism $A \rightarrow \mathbf{2}$.
Thus the strongest contextuality property is:

$$
\text { There is not even one homomorphism } A \rightarrow \mathbf{2}
$$

This is what Kochen and Specker prove for $\mathrm{P}(\mathcal{H})$ with $\operatorname{dim} \mathcal{H} \geq 3$.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.
- The cone from $\mathcal{C}(A)$ to B is also a cone in pBA,
- hence there is a mediating morphism $A \longrightarrow B$!

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.
- The cone from $\mathcal{C}(A)$ to B is also a cone in pBA,
- hence there is a mediating morphism $A \longrightarrow B$!

But note that BA is an equational variety of algebras over Set.

An apparent contradiction

- BA is a full subcategory of pBA.
- A is the colimit in pBA of the diagem $\mathcal{C}(A)$ of its boolean subalgebras.
- Let B be the colimit in BA of the same diagram $\mathcal{C}(A)$.
- The cone from $\mathcal{C}(A)$ to B is also a cone in pBA,
- hence there is a mediating morphism $A \longrightarrow B$!

But note that BA is an equational variety of algebras over Set.
As such, it is complete and cocomplete, but it also admits the one-element algebra $\mathbf{1}$, in which $0=1$. Note that $\mathbf{1}$ does not have a homomorphism to 2 .

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

We could say that such a diagram is "implicitly contradictory", and in trying to combine all the information in a colimit, we obtain the manifestly contradictory 1 .

Contextuality: locally consistent but globally inconsistent!

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

We could say that such a diagram is "implicitly contradictory", and in trying to combine all the information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem

Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to $\mathbf{2}$.
2. The colimit in BA of the diagram $\mathcal{C}(A)$ of boolean subalgebras of A in $\mathbf{B A}$ is $\mathbf{1}$.

KS property and colimits

Thus, if a partial Boolean algebra A has no homomorphism to 2 , the colimit of $\mathcal{C}(A)$, its diagram of Boolean subalgebras, must be $\mathbf{1}$.

We could say that such a diagram is "implicitly contradictory", and in trying to combine all the information in a colimit, we obtain the manifestly contradictory 1.

Contextuality: locally consistent but globally inconsistent!

Theorem

Let A be a partial Boolean algebra. The following are equivalent:

1. A has the K-S property, i.e. it has no morphism to $\mathbf{2}$.
2. The colimit in BA of the diagram $\mathcal{C}(A)$ of boolean subalgebras of A in BA is $\mathbf{1}$.
3. $A\left[A^{2}\right]=1$.

Conditions of 'impossible' experience

Let A be a partial Boolean algebra.

- Clearly, $A \cong A[\emptyset]$.

Conditions of 'impossible' experience

Let A be a partial Boolean algebra.

- Clearly, $A \cong A[\emptyset]$.
- A pure Boolean term $\varphi(\vec{x})$ is interpretable in A w.r.t. an assignment $\vec{x} \mapsto \vec{a}$ if the pre-term $t:=\varphi(\vec{a})$ satisfies $t \downarrow$ in $A[\varnothing]$.

Conditions of 'impossible' experience

Let A be a partial Boolean algebra.

- Clearly, $A \cong A[\emptyset]$.
- A pure Boolean term $\varphi(\vec{x})$ is interpretable in A w.r.t. an assignment $\vec{x} \mapsto \vec{a}$ if the pre-term $t:=\varphi(\vec{a})$ satisfies $t \downarrow$ in $A[\varnothing]$.
- A satisfies $\varphi(\vec{a})$ if $t \equiv 1$ in $A[\emptyset]$.

Theorem

The following are equivalent:

1. A has the K-S property.
2. There is a $\varphi(\vec{x}) \equiv_{\text {Bool }} 0$ and assignment $\vec{x} \mapsto \vec{a}$ s.t. A satisfies $\varphi(\vec{a})$.

Tensor products and partial Boolean algebras

A (first) tensor product by generators and relations

Heunen \& van den Berg show that pBA has a monoidal structure:

$$
A \otimes B:=\operatorname{colim}\{C+D \mid C \in \mathcal{C}(A), D \in \mathcal{C}(B)\}
$$

where $C+D$ is the coproduct of Boolean algebras.

A (first) tensor product by generators and relations

Heunen \& van den Berg show that pBA has a monoidal structure:

$$
A \otimes B:=\operatorname{colim}\{C+D \mid C \in \mathcal{C}(A), D \in \mathcal{C}(B)\}
$$

where $C+D$ is the coproduct of Boolean algebras.
Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the Adjoint Functor Theorem.

A (first) tensor product by generators and relations

Heunen \& van den Berg show that pBA has a monoidal structure:

$$
A \otimes B:=\operatorname{colim}\{C+D \mid C \in \mathcal{C}(A), D \in \mathcal{C}(B)\}
$$

where $C+D$ is the coproduct of Boolean algebras.
Not constructed explicitly: relies on the existence of colimits in pBA, which is proved via the Adjoint Functor Theorem.

We can use our construction to give an explicit generators-and-relations description.

Proposition

Let A and B be partial Boolean algebras. Then

$$
A \otimes B \cong(A \oplus B)[\odot]
$$

where \oplus is the relation on the carrier set of $A \oplus B$ given by $\imath(a) \oplus \jmath(b)$ for all $a \in A$ and $b \in B$.

A more expressive tensor product

- The functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$

A more expressive tensor product

- The functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,

A more expressive tensor product

- The functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$

A more expressive tensor product

- The functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.

A more expressive tensor product

- The functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow 2$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.
- But, from Kochen (2015), 'A reconstruction of quantum mechanics':
- The images of $\mathrm{P}(\mathcal{H})$ and $\mathrm{P}(\mathcal{K})$ generate $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$, for any finite-dimensional \mathcal{H} and \mathcal{K}.
- This is used to justify the claim contradicted above.

A more expressive tensor product

- The functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.
- But, from Kochen (2015), 'A reconstruction of quantum mechanics':
- The images of $\mathrm{P}(\mathcal{H})$ and $\mathrm{P}(\mathcal{K})$ generate $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$, for any finite-dimensional \mathcal{H} and \mathcal{K}.
- This is used to justify the claim contradicted above.
- The gap is that more relations hold in $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ than in $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K})$.

A more expressive tensor product

- The functor $\mathrm{P}: \mathbf{H i l b} \longrightarrow \mathbf{p B A}:: \mathcal{H} \longmapsto \mathrm{P}(\mathcal{H})$ is lax monoidal.
- Embedding $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ induced by the obvious embeddings $\mathrm{P}(\mathcal{H}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: p \longmapsto p \otimes 1$ and $\mathrm{P}(\mathcal{K}) \longrightarrow \mathrm{P}(\mathcal{H} \otimes \mathcal{K}):: q \longmapsto 1 \otimes q$
- This is far from being surjective:
- Take $\mathcal{H}=\mathcal{K}=\mathbb{C}^{2}$
- There are (many) homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$,
- which lift to homomorphisms $\mathrm{P}\left(\mathbb{C}^{2}\right) \otimes \mathrm{P}\left(\mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$.
- But, by KS, there are no homomorphisms $\mathrm{P}\left(\mathbb{C}^{4}\right)=\mathrm{P}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right) \longrightarrow \mathbf{2}$
- Indeed, quantum non-classicality emerges in the passage from $P\left(\mathbb{C}^{2}\right)$ to $P\left(\mathbb{C}^{4}\right)=P\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$.
- But, from Kochen (2015), 'A reconstruction of quantum mechanics':
- The images of $\mathrm{P}(\mathcal{H})$ and $\mathrm{P}(\mathcal{K})$ generate $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$, for any finite-dimensional \mathcal{H} and \mathcal{K}.
- This is used to justify the claim contradicted above.
- The gap is that more relations hold in $\mathrm{P}(\mathcal{H} \otimes \mathcal{K})$ than in $\mathrm{P}(\mathcal{H}) \otimes \mathrm{P}(\mathcal{K})$.
- Nevertheless, this result is suggestive.

It poses the challenge of finding a stronger notion of tensor product.

A more expressive tensor product (ctd)

A more expressive tensor product (ctd)

- Consider projectors $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$.
- to show that they are orthogonal, we have a disjunctive requirement: $p_{1} \perp q_{1}$ or $p_{2} \perp q_{2}$.
- we are entitled to conclude that $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$ are commeasurable, even though (say) p_{2} and q_{2} are not

A more expressive tensor product (ctd)

- Consider projectors $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$.
- to show that they are orthogonal, we have a disjunctive requirement: $p_{1} \perp q_{1}$ or $p_{2} \perp q_{2}$.
- we are entitled to conclude that $p_{1} \otimes p_{2}$ and $q_{1} \otimes q_{2}$ are commeasurable, even though (say) p_{2} and q_{2} are not

Indeed, the idea that propositions can be defined on quantum systems even though subexpressions are not is emphasized by Kochen.

Logical exclusivity principle

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (exclusive events)

Two elements $a, b \in A$ are said to be exclusive, written $a \perp b$, if there is a $c \in A$ such that $a \odot c$ with $a \leq c$ and $b \odot c$ with $b \leq \neg c$.

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (exclusive events)

Two elements $a, b \in A$ are said to be exclusive, written $a \perp b$, if there is a $c \in A$ such that $a \odot c$ with $a \leq c$ and $b \odot c$ with $b \leq \neg c$.

- Note that $a \perp b$ is a weaker requirement than $a \wedge b=0$.
- The two would be equivalent in a Boolean algebra.
- But in a general partial Boolean algebra, there might be exclusive events that are not commeasurable (and for which, therefore, the \wedge operation is not defined).

Logical exclusivity principle

Let A be a partial Boolean algebra.
For $a, b \in A$, we write $a \leq b$ to mean $a \odot b$ and $a \wedge b=a$.

Definition (exclusive events)

Two elements $a, b \in A$ are said to be exclusive, written $a \perp b$, if there is a $c \in A$ such that $a \odot c$ with $a \leq c$ and $b \odot c$ with $b \leq \neg c$.

- Note that $a \perp b$ is a weaker requirement than $a \wedge b=0$.
- The two would be equivalent in a Boolean algebra.
- But in a general partial Boolean algebra, there might be exclusive events that are not commeasurable (and for which, therefore, the \wedge operation is not defined).

Definition

A is said to satisfy the logical exclusivity principle (LEP) if any two elements that are logically exclusive are also commeasurable, i.e. if $\perp \subseteq \odot$.

Logical exclusivity and transitivity

Definition

A partial Boolean algebra is said to be transitive if for all elements a, b, c, if $a \leq b$ and $b \leq c$, then $a \leq c$, i.e. \leq is (globally) a partial order on A.

Proposition

A partial Boolean algebra satisfies LEP if and only if it is transitive.

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.
- But we can freely generate, from any given pba, a new pba satisfying LEP.

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.
- But we can freely generate, from any given pba, a new pba satisfying LEP.
- This LEP-isation is analogous to e.g. the way one can 'abelianise' any group, or use Stone-Čech compactification to form a compact Hausdorff space from any topological space.

A reflective adjunction for logical exclusivity

- It's not clear whether $A[\perp]$ necessarily satisfies LEP.
- While the principle holds for all its elements in the image of $\eta: A \rightarrow A[\perp]$, it may fail to hold for other elements in $A[\perp]$.
- But we can freely generate, from any given pba, a new pba satisfying LEP.
- This LEP-isation is analogous to e.g. the way one can 'abelianise' any group, or use Stone-Čech compactification to form a compact Hausdorff space from any topological space.

Theorem

The category epBA of partial Boolean algebras satisfying LEP is a reflective subcategory of pBA, i.e. the inclusion functor $1:$ epBA \longrightarrow pBA has a left adjoint $X:$ pBA $\longrightarrow \mathbf{e p B A}$.

A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra $X(A)=A[\perp]^{*}$ satisfying $L E P$ such that:

- there is a homomorphism $\eta: A \longrightarrow A[\perp]^{*}$;
- for any homomorphism $h: A \longrightarrow B$ where B is a partial Boolean algebra B satisfying LEP, there is a unique homomorphism $\hat{h}: A[\perp]^{*} \longrightarrow B$ such that:

A reflective adjunction for logical exclusivity

Theorem

Concretely, to any partial Boolean algebra A, we can associate a partial Boolean algebra $X(A)=A[\perp]^{*}$ satisfying $L E P$ such that:

- there is a homomorphism $\eta: A \longrightarrow A[\perp]^{*}$;
- for any homomorphism $h: A \longrightarrow B$ where B is a partial Boolean algebra B satisfying LEP, there is a unique homomorphism $\hat{h}: A[\perp]^{*} \longrightarrow B$ such that:

Proof. Adapt our earlier construction, adding the following rule to the inductive system:

$$
\frac{u \wedge t \equiv u, v \wedge \neg t \equiv v}{u \odot v}
$$

Towards a more expressive tensor

Logical exclusivity tensor product

Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.

Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.
This amounts to composing with the reflection to epBA; $\boxtimes:=X \circ \otimes$. Explicitly, we define the logical exclusivity tensor product by

$$
A \boxtimes B=(A \otimes B)[\perp]^{*}=(A \oplus B)[\odot][\perp]^{*} .
$$

Logical exclusivity tensor product

This leads us to define a stronger tensor product by forcing logical exclusivity to hold.
This amounts to composing with the reflection to epBA; $\boxtimes:=X \circ \otimes$. Explicitly, we define the logical exclusivity tensor product by

$$
A \boxtimes B=(A \otimes B)[\perp]^{*}=(A \oplus B)[\odot][\perp]^{*} .
$$

- This is sound for the Hilbert space model. More precisely, P is still a lax monoidal functor wrt this tensor product.
- How close does it get to the full Hilbert space tensor product?

A limitative result

A limitative result

- Can extending commeasurability by a relation \odot induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)
Let A be a partial Boolean algebra.
For any relation © on A, A is $K-S$ if and only if $A[\odot]$ is $K-S$. Moreover, A is $K-S$ if and only if $A[\perp]$ is $K-S$.

A limitative result

- Can extending commeasurability by a relation \odot induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)
Let A be a partial Boolean algebra.
For any relation © on A, A is $K-S$ if and only if $A[\odot]$ is $K-S$.
Moreover, A is $K-S$ if and only if $A[\perp]$ is $K-S$.
Corollary
If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{*}$.

A limitative result

- Can extending commeasurability by a relation © induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra.
For any relation © on A, A is $K-S$ if and only if $A[\odot]$ is $K-S$.
Moreover, A is $K-S$ if and only if $A[\perp]$ is $K-S$.

Corollary

If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{*}$.
This implies that the LE tensor product $A \boxtimes B$ never induces a K-S paradox if none was present in A or B.

A limitative result

- Can extending commeasurability by a relation \odot induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra.
For any relation © on A, A is $K-S$ if and only if $A[\odot]$ is $K-S$.
Moreover, A is $K-S$ if and only if $A[\perp]$ is $K-S$.

Corollary

If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{*}$.
This implies that the LE tensor product $A \boxtimes B$ never induces a K -S paradox if none was present in A or B.

In particular, $\mathrm{P}\left(\mathbb{C}^{2}\right) \boxtimes \mathrm{P}\left(\mathbb{C}^{2}\right)$ does not have the K-S property.

A limitative result

- Can extending commeasurability by a relation © induce the K-S property in $A[\odot]$ when it did not hold in A ?

Theorem (K-S faithfulness of extensions)

Let A be a partial Boolean algebra.
For any relation © on A, A is $K-S$ if and only if $A[\odot]$ is $K-S$.
Moreover, A is $K-S$ if and only if $A[\perp]$ is $K-S$.

Corollary

If A and B are not $K-S$, then neither is $A \otimes B[\perp]^{*}$.
This implies that the LE tensor product $A \boxtimes B$ never induces a K-S paradox if none was present in A or B.

In particular, $\mathrm{P}\left(\mathbb{C}^{2}\right) \boxtimes \mathrm{P}\left(\mathbb{C}^{2}\right)$ does not have the K-S property.
So, we need a stronger tensor product to track this emergent complexity in the quantum case.

Questions...

