From Vorob'ev's theorem to monogamy of non-locality and local macroscopic averages

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

4th Workshop on Quantum Contextuality in Quantum Mechanics and Beyond (QCQMB'21)

17th May 2021

This talk is based on:
'On monogamy of non-locality and macroscopic averages' RSB, Proceedings QPL 2014, arXiv:1412.8541 [quant-ph].
'Contextuality in quantum mechanics and beyond' RSB, DPhil thesis, University of Oxford, 2015.

Monogamy and average macroscopic locality

- Average macroscopic correlations from microscopic models are local

For multipartite quantum models:
'Local realism of macroscopic correlations'
Ramanathan, Paterek, Kay, Kurzyński, Kaszlikowski, Phys. Rev. Lett. 107, 060405, 2011.

- Monogamy of violation of Bell inequalities

For bipartite no-signalling models:
'Monogamy of Bell's inequality violations in nonsignaling theories' Pawłowski, Brukner, Phys. Rev. Lett. 102, 030403, 2009.

Monogamy and average macroscopic locality

- Average macroscopic correlations from microscopic models are local

For multipartite quantum models:
'Local realism of macroscopic correlations'
Ramanathan, Paterek, Kay, Kurzyński, Kaszlikowski, Phys. Rev. Lett. 107, 060405, 2011.

- Monogamy of violation of Bell inequalities

For bipartite no-signalling models:
'Monogamy of Bell's inequality violations in nonsignaling theories' Pawłowski, Brukner, Phys. Rev. Lett. 102, 030403, 2009.

- Connect and generalise these two results,

Monogamy and average macroscopic locality

- Average macroscopic correlations from microscopic models are local

For multipartite quantum models:
'Local realism of macroscopic correlations'
Ramanathan, Paterek, Kay, Kurzyński, Kaszlikowski, Phys. Rev. Lett. 107, 060405, 2011.

- Monogamy of violation of Bell inequalities

For bipartite no-signalling models:
'Monogamy of Bell's inequality violations in nonsignaling theories' Pawłowski, Brukner, Phys. Rev. Lett. 102, 030403, 2009.

- Connect and generalise these two results,
- providing a structural explanation related to Vorob'ev's theorem.
- We will mainly consider a simple illustrative example.

Related

Related:
'Generalized monogamy of contextual inequalities from the no-disturbance principle' Ramanathan, Soeda, Kurzyński, Kaszlikowski, Phys. Rev. Lett. 109, 050404, 2012.

Monogamy of non-locality

Non-locality

Non-locality

	00	01	10	11
$a_{0} b_{0}$	$1 / 2$	0	0	$1 / 2$
$a_{0} b_{1}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{1} b_{0}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{1} b_{1}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Non-locality

	00	01	10	11
$a_{0} b_{0}$	$1 / 2$	0	0	$1 / 2$
$a_{0} b_{1}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{1} b_{0}$	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
$a_{1} b_{1}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Monogamy of non-locality

Monogamy of non-locality

- Empirical model: no-signalling probabilities

$$
p\left(a_{i}, b_{j}, c_{k}=x, y, z\right)
$$

where x, y, z are possible outcomes.

Monogamy of non-locality

- Empirical model: no-signalling probabilities

$$
p\left(a_{i}, b_{j}, c_{k}=x, y, z\right)
$$

where x, y, z are possible outcomes.

- Consider the subsystem composed of A and B only, given by marginalisation (in QM, partial trace):

$$
p\left(a_{i}, b_{j}=x, y\right)=\sum_{z} p\left(a_{i}, b_{j}, c_{k}=x, y, z\right)
$$

This is independent of c_{k} due to no-signalling.

- Similarly define $p\left(a_{i}, c_{k}=x, z\right)$. (subsystem consisting of A and C)

Monogamy of non-locality

Given a Bell inequality $\mathcal{B}(-,-) \leq$,$R ,$

Monogamy of non-locality

Given a Bell inequality $\mathcal{B}(-,-) \leq$,$R ,$

Monogamy of non-locality

Given a Bell inequality $\mathcal{B}(-,-) \leq$,$R ,$

Monogamy of non-locality

Given a Bell inequality $\mathcal{B}(-,-) \leq$,$R ,$

Monogamy of non-locality

Given a Bell inequality $\mathcal{B}(-,-) \leq$,$R ,$

Monogamy relation: $\quad \mathcal{B}(A, B)+\mathcal{B}(A, C) \leq 2 R$

Locality of macroscopic averages

Macroscopic measurements

(Microscopic) dichotomic measurement

- A single particle is subject to an interaction a and collides with one of two detectors: outcomes 0 and 1 .
- The interaction is probabilistic: $p(a=x)$, with $x=0,1$.

Macroscopic measurements

Macroscopic dichotomic measurement

- Consider beam (or region) of N particles, differently prepared.
- Subject each particle to the interaction a: the beam gets divided into 2 smaller beams hitting each of the detectors.

Macroscopic measurements

Macroscopic dichotomic measurement

- Consider beam (or region) of N particles, differently prepared.
- Subject each particle to the interaction a: the beam gets divided into 2 smaller beams hitting each of the detectors.
- Outcome represented by the intensity of resulting beams:
$I_{1} \in[0,1] \quad$ proportion of particles hitting the detector 1 .

Macroscopic measurements

Macroscopic dichotomic measurement

- Consider beam (or region) of N particles, differently prepared.
- Subject each particle to the interaction a: the beam gets divided into 2 smaller beams hitting each of the detectors.
- Outcome represented by the intensity of resulting beams:
$I_{1} \in[0,1] \quad$ proportion of particles hitting the detector 1 .
- We are only concerned with the mean, or expected value, of such intensities.

Macroscopic average behaviour

- This mean intensity can be interpreted as the average behaviour among the N particles:
if we would randomly select one of the particles and subject it to the microscopic measurement a, we would obtain outcome x with probability I_{x} :

$$
I_{x}=\frac{1}{N} \sum_{i=1}^{N} p_{i}(a=x)
$$

- The situation is analogous to statistical mechanics, where a macrostate arises as an averaging over an extremely large number of microstates, and hence several different microstates can correspond to the same macrostate.

Macroscopic average behaviour: multipartite

- Multipartite macroscopic scenarios
- several 'macroscopic' sites consisting of a large number of microscopic sites/particles;
- several (macro) measurement settings at each site.

Macroscopic average behaviour: multipartite

- Multipartite macroscopic scenarios
- several 'macroscopic' sites consisting of a large number of microscopic sites/particles;
- several (macro) measurement settings at each site.
- Average macroscopic Bell experiment the (mean) values of the macroscopic intensities indicate the behaviour of a randomly chosen tuple of particles: one from each of the beams, or sites.

Macroscopic average behaviour: multipartite

- Multipartite macroscopic scenarios
- several 'macroscopic' sites consisting of a large number of microscopic sites/particles;
- several (macro) measurement settings at each site.
- Average macroscopic Bell experiment the (mean) values of the macroscopic intensities indicate the behaviour of a randomly chosen tuple of particles: one from each of the beams, or sites.
- We'll show that, as long as there are enough particles (microscopic sites) in each macroscopic site, such average macroscopic behaviour is always local no matter which no-signalling model accounts for the underlying microscopic correlations.

Macroscopic average behaviour: (toy) tripartite example

- We regard sites B and C as forming one 'macroscopic' site, M, and A as forming another.
- In order to be 'lumped together', B and C must be symmetric/of the same type: the symmetry identifies the measurements $b_{0} \sim c_{0}$ and $b_{1} \sim c_{1}$, giving rise to 'macroscopic' measurements m_{0} and m_{1}.

Macroscopic average behaviour: (toy) tripartite example

- We regard sites B and C as forming one 'macroscopic' site, M, and A as forming another.
- In order to be 'lumped together', B and C must be symmetric/of the same type: the symmetry identifies the measurements $b_{0} \sim c_{0}$ and $b_{1} \sim c_{1}$, giving rise to 'macroscopic' measurements m_{0} and m_{1}.
- Given a (tripartite) empirical model $p\left(a_{i}, b_{j}, c_{k}=x, y, z\right)$, the 'macroscopic' average behaviour is a bipartite model (with two macro sites A and M) given by the following average of probabilities of the partial models:

$$
p\left(a_{i}, m_{j}=x, y\right)=\frac{p\left(a_{i}, b_{j}=x, y\right)+p\left(a_{i}, c_{j}=x, y\right)}{2}
$$

Example: W state

Z and X measurements on the W state:

	000	001	010	011	100	101	110	111
$a_{0} b_{0} c_{0}$	9	1	1	1	1	1	1	9
$a_{0} b_{0} c_{1}$	8	2	0	2	0	2	8	2
$a_{0} b_{1} c_{0}$	8	0	2	2	0	8	2	2
$a_{0} b_{1} c_{1}$	4	4	4	0	4	4	4	0
$a_{1} b_{0} c_{0}$	8	0	0	8	2	2	2	2
$a_{1} b_{0} c_{1}$	4	4	4	4	4	0	4	0
$a_{1} b_{1} c_{0}$	4	4	4	4	4	4	0	0
$a_{1} b_{1} c_{1}$	0	8	8	0	8	0	0	0
(every entry should be divided by 24)								

Example: W state

$$
\begin{array}{l|cccc}
& 00 & 01 & 10 & 11 \\
\hline a_{0} m_{0} & 10 & 2 & 2 & 10 \\
a_{0} m_{1} & 8 & 4 & 8 & 4 \\
a_{1} m_{0} & 8 & 8 & 4 & 4 \\
a_{1} m_{1} & 8 & 8 & 8 & 0 \\
\text { (every entry should be divided by } 24 \text {) }
\end{array}
$$

This is local!

Another example model

	000	001	010	011	100	101	110	111
$a_{0} b_{0} c_{0}$	1	1	0	0	0	0	1	1
$a_{0} b_{0} c_{1}$	1	1	0	0	0	0	1	1
$a_{0} b_{1} c_{0}$	1	1	0	0	0	0	1	1
$a_{0} b_{1} c_{1}$	1	1	0	0	0	0	1	1
$a_{1} b_{0} c_{0}$	1	1	0	0	0	0	1	1
$a_{1} b_{0} c_{1}$	1	1	0	0	0	0	1	1
$a_{1} b_{1} c_{0}$	0	0	1	1	1	1	0	0
$a_{1} b_{1} c_{1}$	0	0	1	1	1	1	0	0
	(every entry should be divided by 4)							

Another example model

	00	01	10	11
$a_{0} b_{0}$	2	0	0	2
$a_{0} b_{1}$	2	0	0	2
$a_{1} b_{0}$	2	0	0	2
$a_{1} b_{1}$	0	2	2	0
(divided by 4)				

	00	01	10	11
$a_{0} c_{0}$	1	1	1	1
$a_{0} c_{1}$	1	1	1	1
$a_{1} c_{0}$	1	1	1	1
$a_{1} c_{1}$	1	1	1	1
(divided by 4)				

maximally non-local
local

	00	01	10	11
$a_{0} m_{0}$	3	1	1	3
$a_{0} m_{1}$	3	1	1	3
$a_{1} m_{0}$	3	1	1	3
$a_{1} m_{1}$	1	3	3	1

(every entry should be divided by 8)
Again, this is local!

Connecting monogamy and macroscopic averages

A simple observation

Consider any bipartite Bell inequality $\mathcal{B}(-,-) \leq R$ given by coefficients $\alpha(i, j, x, y)$ and bound R.

A simple observation

Consider any bipartite Bell inequality $\mathcal{B}(-,-) \leq R$ given by coefficients $\alpha(i, j, x, y)$ and bound R.

$$
\begin{array}{ll}
\Leftrightarrow & \mathcal{B}(A, M) \leq R \\
\Leftrightarrow & \sum_{i, j, x, y} \alpha(i, j, x, y) p\left(a_{i}, m_{j}=x, y\right) \leq R \\
\Leftrightarrow & \sum_{i, j, x, y} \alpha(i, j, x, y) \frac{p\left(a_{i}, b_{j}=x, y\right)+p\left(a_{i}, c_{j}=x, y\right)}{2} \leq R \\
\Leftrightarrow & \sum_{i, j, x, y} \alpha(i, j, x, y) p\left(a_{i}, b_{j}=x, y\right)+\sum_{i, j, x, y} \alpha(i, j, x, y) p\left(a_{i}, c_{j}=x, y\right) \leq 2 R \\
\Leftrightarrow & \mathcal{B}(A, B)+\mathcal{B}(A, C) \leq R
\end{array}
$$

A simple observation

Consider any bipartite Bell inequality $\mathcal{B}(-,-) \leq R$ given by coefficients $\alpha(i, j, x, y)$ and bound R.

$$
\begin{array}{ll}
& \mathcal{B}(A, M) \leq R \\
\Leftrightarrow & \sum_{i, j, x, y} \alpha(i, j, x, y) p\left(a_{i}, m_{j}=x, y\right) \leq R \\
\Leftrightarrow & \sum_{i, j, x, y} \alpha(i, j, x, y) \frac{p\left(a_{i}, b_{j}=x, y\right)+p\left(a_{i}, c_{j}=x, y\right)}{2} \leq R \\
\Leftrightarrow & \sum_{i, j, x, y} \alpha(i, j, x, y) p\left(a_{i}, b_{j}=x, y\right)+\sum_{i, j, x, y} \alpha(i, j, x, y) p\left(a_{i}, c_{j}=x, y\right) \leq 2 R \\
\Leftrightarrow \quad & \mathcal{B}(A, B)+\mathcal{B}(A, C) \leq R
\end{array}
$$

The average model $p_{a_{i}, m_{j}}$ satisfies the Bell inequality if and only if in the microscopic model Alice is monogamous with respect to violating it with Bob and Charlie.

A simple observation

- In the two examples above, the average models were local.
- Equivalently, the examples satisfied the monogamy relation for any Bell inequality.

A simple observation

- In the two examples above, the average models were local.
- Equivalently, the examples satisfied the monogamy relation for any Bell inequality.
- This is true for all no-signalling empirical models on the tripartite scenario under consideration, with two measurement settings per site.

A simple observation

- In the two examples above, the average models were local.
- Equivalently, the examples satisfied the monogamy relation for any Bell inequality.
- This is true for all no-signalling empirical models on the tripartite scenario under consideration, with two measurement settings per site.
- We now give a structural explanation for this...
- ... which generalises well beyond this particular scenario.

Vorob'ev's theorem

Formalising empirical data

A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a non-empty set of possible outcomes O_{x}
- Σ - an abstract simplicial complex on X faces are called the measurement contexts

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{0}	b_{0}	--	--	--	--
a_{0}	b_{1}	--	--	--	--
a_{1}	b_{0}	--	--	--	--
a_{1}	b_{1}	--	--	--	--
$X=\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}, O_{x}=\{0,1\}$					

Formalising empirical data

A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a non-empty set of possible outcomes O_{x}
- Σ - an abstract simplicial complex on X faces are called the measurement contexts

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{0}	b_{0}	--	--	--	--
a_{0}	b_{1}	--	--	--	--
a_{1}	b_{0}	--	--	--	--
a_{1}	b_{1}	--	--	--	--

$$
\begin{aligned}
& X=\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}, O_{x}=\{0,1\} \\
& \Sigma=\downarrow\left\{\left\{a_{0}, b_{0}\right\},\left\{a_{0}, b_{1}\right\},\left\{a_{1}, b_{0}\right\},\left\{a_{1}, b_{1}\right\}\right\} .
\end{aligned}
$$

```
family of finite subsets of \(X\) such that:
- it contains all the singletons:
    \(\forall x \in X .\{x\} \in \Sigma\).
- it is downwards closed: \(\sigma \in \Sigma\) and
    \(\tau \subseteq \sigma\) implies \(\tau \in \Sigma\).
```


Formalising empirical data

A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a non-empty set of possible outcomes O_{x}
- Σ - an abstract simplicial complex on X faces are called the measurement contexts

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{0}	b_{0}	--	--	--	--
a_{0}	b_{1}	--	--	--	--
a_{1}	b_{0}	--	--	--	--
a_{1}	b_{1}	--	--	--	--
$X=\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}, O_{x}=\{0,1\}$					
$\boldsymbol{\Sigma}=\downarrow\left\{\left\{a_{0}, b_{0}\right\},\left\{a_{0}, b_{1}\right\},\left\{a_{1}, b_{0}\right\},\left\{a_{1}, b_{1}\right\}\right\}$.					

Formalising empirical data

A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a non-empty set of possible outcomes O_{x}
- Σ - an abstract simplicial complex on X faces are called the measurement contexts

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{0}	b_{0}	$1 / 2$	0	0	$1 / 2$
a_{0}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{0}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{1}	0	$1 / 2$	$1 / 2$	0
$X=\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}, O_{x}=\{0,1\}$					
$\boldsymbol{\Sigma}=\downarrow\left\{\left\{a_{0}, b_{0}\right\},\left\{a_{0}, b_{1}\right\},\left\{a_{1}, b_{0}\right\},\left\{a_{1}, b_{1}\right\}\right\}$.					

An empirical model $e=\left\{e_{\sigma}\right\}_{\sigma \in \Sigma}$ on \mathbf{X} :

- each $e_{\sigma} \in \operatorname{Prob}\left(\prod_{x \in \sigma} O_{x}\right)$ is a probability distribution over joint outcomes for σ.
- generalised no-signalling holds: for any $\sigma, \tau \in \Sigma$, if $\tau \subseteq \sigma$,

$$
\left.e_{\sigma}\right|_{\tau}=e_{\tau}
$$

(i.e. marginals are well-defined)

Formalising empirical data

A measurement scenario $\mathbf{X}=\langle X, \Sigma, O\rangle$:

- X - a finite set of measurements
- $O=\left(O_{x}\right)_{x \in X}$ - for each $x \in X$ a non-empty set of possible outcomes O_{x}
- Σ - an abstract simplicial complex on X faces are called the measurement contexts

A	B	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
a_{0}	b_{0}	$1 / 2$	0	0	$1 / 2$
a_{0}	b_{1}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{0}	$1 / 2$	0	0	$1 / 2$
a_{1}	b_{1}	0	$1 / 2$	$1 / 2$	0
$X=\left\{a_{0}, a_{1}, b_{0}, b_{1}\right\}, O_{x}=\{0,1\}$					
$\boldsymbol{\Sigma}=\downarrow\left\{\left\{a_{0}, b_{0}\right\},\left\{a_{0}, b_{1}\right\},\left\{a_{1}, b_{0}\right\},\left\{a_{1}, b_{1}\right\}\right\}$.					

An empirical model $e=\left\{e_{\sigma}\right\}_{\sigma \in \Sigma}$ on \mathbf{X} :

- each $e_{\sigma} \in \operatorname{Prob}\left(\prod_{x \in \sigma} O_{x}\right)$ is a probability distribution over joint outcomes for σ.
- generalised no-signalling holds: for any $\sigma, \tau \in \Sigma$, if $\tau \subseteq \sigma$,

$$
\left.e_{\sigma}\right|_{\tau}=e_{\tau}
$$

(i.e. marginals are well-defined)

Contextuality

An empirical model $e=\left\{e_{\sigma}\right\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

Contextuality

An empirical model $e=\left\{e_{\sigma}\right\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

Contextuality

An empirical model $e=\left\{e_{\sigma}\right\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality

An empirical model $e=\left\{e_{\sigma}\right\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.
Contextuality: family of data that is locally consistent but globally inconsistent.

Contextuality

An empirical model $e=\left\{e_{\sigma}\right\}_{\sigma \in \Sigma}$ on a measurement scenario (X, Σ, O) is non-contextual if there is a distribution d on $\prod_{x \in X} O_{x}$ such that, for all $\sigma \in \Sigma$:

$$
\left.d\right|_{\sigma}=e_{\sigma} .
$$

That is, we can glue all the local information together into a global consistent description from which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.
Contextuality: family of data that is locally consistent but globally inconsistent.
The import of Bell's and Kochen-Spekker's theorems is that there are behaviours arising from quantum mechanics that are contextual.

Vorob'ev's theorem

' Consistent families of measures and their extensions'
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

- In the context of game theory.
- Consider a collection of variables
- and distributions on the joint values of some variables.
- These distributions are pairwise consistent.

Vorob'ev's theorem

' Consistent families of measures and their extensions'
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

- In the context of game theory.
- Consider a collection of variables
- and distributions on the joint values of some variables.
- These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global probability distribution for any prescribed pairwise consistent distrbutions?

Vorob'ev's theorem

' Consistent families of measures and their extensions'
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

- In the context of game theory.
- Consider a collection of variables
- and distributions on the joint values of some variables.
- These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global probability distribution for any prescribed pairwise consistent distrbutions?

In our language:

> For which measurement scenarios is it the case that any no-signalling (nodisturbing) behaviour is non-contextual?

Vorob'ev's theorem

' Consistent families of measures and their extensions'
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

- In the context of game theory.
- Consider a collection of variables
- and distributions on the joint values of some variables.
- These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global probability distribution for any prescribed pairwise consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any no-signalling (nodisturbing) behaviour is non-contextual?

- Necessary and sufficient condition: regularity

Vorob'ev's theorem

' Consistent families of measures and their extensions'
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

- In the context of game theory.
- Consider a collection of variables
- and distributions on the joint values of some variables.
- These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global probability distribution for any prescribed pairwise consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any no-signalling (nodisturbing) behaviour is non-contextual?

- Necessary and sufficient condition: regularity or acyclicity!

Acyclicity

- Graham reduction step: delete a vertex that belongs to only one maximal face.

Acyclicity

- Graham reduction step: delete a vertex that belongs to only one maximal face.
- Σ acyclic when it is Graham reducible to the empty simplex.

Acyclicity

- Graham reduction step: delete a vertex that belongs to only one maximal face.
- Σ acyclic when it is Graham reducible to the empty simplex.

Acyclicity

- Graham reduction step: delete a vertex that belongs to only one maximal face.
- Σ acyclic when it is Graham reducible to the empty simplex.

- Σ not acyclic: Graham reduction fails.

Vorob'ev's theorem

Theorem (Vorob'ev 1962, adapted)
All empirical models on Σ are extendable iff Σ is acyclic

A structural explanation

Structural reason

- Measurement scenario: simplicial complex $\mathfrak{D}_{2} * \mathfrak{D}_{2} * \mathfrak{D}_{2}$.

Structural reason

- Measurement scenario: simplicial complex $\mathfrak{D}_{2} * \mathfrak{D}_{2} * \mathfrak{D}_{2}$.

Structural reason

- Measurement scenario: simplicial complex $\mathfrak{D}_{2} * \mathfrak{D}_{2} * \mathfrak{D}_{2}$.

Structural reason

- Measurement scenario: simplicial complex $\mathfrak{D}_{2} * \mathfrak{D}_{2} * \mathfrak{D}_{2}$.
- We identify B and $C: b_{0} \sim c_{0}, b_{1} \sim c_{1}$.
- The macro scenario arises as a quotient.

Structural reason

- Measurement scenario: simplicial complex $\mathfrak{D}_{2} * \mathfrak{D}_{2} * \mathfrak{D}_{2}$.
- We identify B and $C: b_{0} \sim c_{0}, b_{1} \sim c_{1}$.
- The macro scenario arises as a quotient.

Structural reason

- Measurement scenario: simplicial complex $\mathfrak{D}_{2} * \mathfrak{D}_{2} * \mathfrak{D}_{2}$.
- We identify B and $C: b_{0} \sim c_{0}, b_{1} \sim c_{1}$.
- The macro scenario arises as a quotient.

Structural reason

Structural reason

- This quotient complex is acyclic.

Structural reason

- This quotient complex is acyclic.
- Therefore, no matter from which micro model $p_{a_{i}, b_{j}, c_{k}}$ we start, the averaged macro correlations $p_{a_{i}, m_{j}}$ are local.

Structural reason

- This quotient complex is acyclic.
- Therefore, no matter from which micro model $p_{a_{i}, b_{j}, c_{k}}$ we start, the averaged macro correlations $p_{a i, m_{j}}$ are local.
- In particular, they satisfy any Bell inequality.
- Hence, the original tripartite model also satisfies a monogamy relation for any Bell inequality.

A non-acyclic example

Let B and C have 3 measurement settings: $\mathfrak{D}_{2} * \mathfrak{D}_{3} * \mathfrak{D}_{3}=\mathfrak{D}_{2} * \mathfrak{D}_{3}^{(* 2)}$. (only depicted half)

A non-acyclic example

Let B and C have 3 measurement settings: $\mathfrak{D}_{2} * \mathfrak{D}_{3} * \mathfrak{D}_{3}=\mathfrak{D}_{2} * \mathfrak{D}_{3}^{(* 2)}$. (only depicted half)

A non-acyclic example

Let B and C have 3 measurement settings: $\mathfrak{D}_{2} * \mathfrak{D}_{3} * \mathfrak{D}_{3}=\mathfrak{D}_{2} * \mathfrak{D}_{3}^{(* 2)} . \quad$ (only depicted half)

General multipartite scenarios

- Consider n macroscopic sites A, B, C, \ldots
- with k_{i} measurement settings at site i

General multipartite scenarios

- Consider n macroscopic sites A, B, C, \ldots
- with k_{i} measurement settings at site i
- (n-partite Bell inequality $\mathcal{B}(A, B, C, \ldots)$ on scenario $\left.\mathfrak{D}_{k_{1}} * \cdots * \mathfrak{D}_{k_{n}}\right)$

General multipartite scenarios

- Consider n macroscopic sites A, B, C, \ldots
- with k_{i} measurement settings at site i
- (n-partite Bell inequality $\mathcal{B}\left(A, B, C, \ldots\right.$) on scenario $\mathfrak{D}_{k_{1}} * \cdots * \mathfrak{D}_{k_{n}}$)
- Take r_{i} copies of each site i, or r_{i} micro sites constituting i. For a macro site A :
- copies / micro sites: $A^{(1)}, \ldots, A^{\left(r_{1}\right)}$
- measurement settings at $A^{(m)}: a_{1}^{(m)}, \ldots, a_{k_{A}}^{(m)}$

$$
\text { Scenario: } \Sigma_{n, \vec{k}, \vec{r}}:=\mathfrak{D}_{k_{1}}^{\left(* r_{1}\right)} * \cdots * \mathfrak{D}_{k_{n}}^{\left(* r_{n}\right)}
$$

General multipartite scenarios

- Consider n macroscopic sites A, B, C, \ldots
- with k_{i} measurement settings at site i
- (n-partite Bell inequality $\mathcal{B}\left(A, B, C, \ldots\right.$) on scenario $\mathfrak{D}_{k_{1}} * \cdots * \mathfrak{D}_{k_{n}}$)
- Take r_{i} copies of each site i, or r_{i} micro sites constituting i. For a macro site A :
- copies / micro sites: $A^{(1)}, \ldots, A^{\left(r_{1}\right)}$
- measurement settings at $A^{(m)}: a_{1}^{(m)}, \ldots, a_{k_{A}}^{(m)}$

Scenario: $\Sigma_{n, \vec{k}, \vec{r}}:=\mathfrak{D}_{k_{1}}^{\left(* r_{1}\right)} * \cdots * \mathfrak{D}_{k_{n}}^{\left(* r_{n}\right)}$

- Symmetry by $S_{r_{1}} \times \cdots \times S_{r_{n}}$ identifies the copies at each macro site.

$$
\begin{gathered}
a_{j}^{(1)} \sim \cdots \sim a_{j}^{\left(r_{A}\right)} \quad\left(\forall j \in\left\{1, \ldots, k_{A}\right\}\right), \\
b_{j}^{(1)} \sim \cdots \sim a_{j}^{\left(r_{A}\right)} \quad\left(\forall j \in\left\{1, \ldots, k_{A}\right\}\right), \\
\text { etc. }
\end{gathered}
$$

General multipartite scenarios

Proposition

The quotient of the measurement scenario $\Sigma_{n, \vec{k}, \vec{r}}$ by the symmetry above is acyclic iff

General multipartite scenarios

Proposition

The quotient of the measurement scenario $\Sigma_{n, \vec{k}, \vec{r}}$ by the symmetry above is acyclic iff one of the following holds:

- each site has at least as many microscopic sites or copies as it has measurement settings, i.e. $\forall i \in\{1, \ldots, n\} . k_{i} \leq r_{i}$;
- one of the sites has a single copy and the condition above is satisfied by all the other sites, i.e. $\exists i_{0} . \quad\left(r_{i_{0}}=1 \wedge \forall i \in\left\{1, \ldots \widehat{i_{0}} \ldots, n\right\} . k_{i} \leq r_{i}\right)$.

General multipartite scenarios

Proposition

The quotient of the measurement scenario $\Sigma_{n, \vec{k}, \vec{r}}$ by the symmetry above is acyclic iff one of the following holds:

- each site has at least as many microscopic sites or copies as it has measurement settings, i.e. $\forall i \in\{1, \ldots, n\} . k_{i} \leq r_{i}$;
- one of the sites has a single copy and the condition above is satisfied by all the other sites, i.e. $\exists i_{0} . \quad\left(r_{i_{0}}=1 \wedge \forall i \in\left\{1, \ldots \widehat{i_{0}} \ldots, n\right\} . k_{i} \leq r_{i}\right)$.

We get monogamy relations

$$
\sum_{m_{B}=1}^{r_{B}} \sum_{m_{C}=1}^{r_{C}} \cdots \mathcal{B}\left(A, B^{\left(m_{B}\right)}, C^{\left(m_{C}\right)}, \ldots\right) \leq r_{B} r_{C} \cdots R
$$

General construction

- A symmmetry (G-action) on Σ identifies measurements.

General construction

- A symmmetry (G-action) on Σ identifies measurements.
- A model satisfies a G-monogamy relation for a given Bell inequality iff the macroscopic average correlations (i.e. the quotient model by G) satisfy the Bell inequality.

General construction

- A symmmetry (G-action) on Σ identifies measurements.
- A model satisfies a G-monogamy relation for a given Bell inequality iff the macroscopic average correlations (i.e. the quotient model by G) satisfy the Bell inequality.
- If the quotient scenario Σ / G is acyclic, then:
- all no-signalling / no-disturbing empirical models on Σ are G-monogamous with respect to all Bell inequalities;
- since the average model, being defined on this quotient scenario, must be local/non-contextual.

General construction

- A symmmetry (G-action) on Σ identifies measurements.
- A model satisfies a G-monogamy relation for a given Bell inequality iff the macroscopic average correlations (i.e. the quotient model by G) satisfy the Bell inequality.
- If the quotient scenario Σ / G is acyclic, then:
- all no-signalling / no-disturbing empirical models on Σ are G-monogamous with respect to all Bell inequalities;
- since the average model, being defined on this quotient scenario, must be local/non-contextual.
- The approach is not restricted to multipartite Bell-type scenarios. More generally, we can apply the same ideas to derive monogamy relations for contextuality inequalities.

Questions...

