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This talk is based on:

‘On monogamy of non-locality and macroscopic averages’
RSB, Proceedings QPL 2014, arXiv:1412.8541 [quant-ph].

‘Contextuality in quantum mechanics and beyond ’
RSB, DPhil thesis, University of Oxford, 2015.
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Monogamy and average macroscopic locality

I Average macroscopic correlations from microscopic models are local

For multipartite quantum models:

‘Local realism of macroscopic correlations’
Ramanathan, Paterek, Kay, Kurzyński, Kaszlikowski, Phys. Rev. Lett. 107, 060405, 2011.

I Monogamy of violation of Bell inequalities

For bipartite no-signalling models:

‘Monogamy of Bell’s inequality violations in nonsignaling theories’
Paw lowski, Brukner, Phys. Rev. Lett. 102, 030403, 2009.

I Connect and generalise these two results,

I providing a structural explanation related to Vorob'ev’s theorem.

I We will mainly consider a simple illustrative example.
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Related

Related:

‘Generalized monogamy of contextual inequalities from the no-disturbance principle’
Ramanathan, Soeda, Kurzyński, Kaszlikowski, Phys. Rev. Lett. 109, 050404, 2012.
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Monogamy of non-locality



Non-locality

p(ai , bj = x , y)

Alice Bob

a0, a1 b0, b1

00 01 10 11
a0b0 0 0
a0b1

1/8 1/8

a1b0
1/8 1/8

a1b1
1/8 1/8
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Monogamy of non-locality
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Monogamy of non-locality

I Empirical model: no-signalling probabilities

p(ai , bj , ck = x , y , z)

where x , y , z are possible outcomes.

I Consider the subsystem composed of A and B only, given by marginalisation
(in QM, partial trace):

p(ai , bj = x , y) =
∑
z

p(ai , bj , ck = x , y , z)

This is independent of ck due to no-signalling.

I Similarly define p(ai , ck = x , z). (subsystem consisting of A and C)
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Monogamy of non-locality
Given a Bell inequality B(−,−, ) ≤ R,

Alice

Bob

Charlie

a0, a1

b0, b1

c0, c1

Monogamy relation: B(A,B) + B(A,C ) ≤ 2R
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Locality of macroscopic averages



Macroscopic measurements

(Microscopic) dichotomic measurement

I A single particle is subject to an interaction a and collides with one of two detectors:
outcomes 0 and 1.

I The interaction is probabilistic: p(a = x), with x = 0, 1.

a

10

10

source
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Macroscopic measurements
Macroscopic dichotomic measurement

I Consider beam (or region) of N particles, differently prepared.

I Subject each particle to the interaction a: the beam gets divided into 2 smaller beams
hitting each of the detectors.

I Outcome represented by the intensity of resulting beams:
I1 ∈ [0, 1] proportion of particles hitting the detector 1.

I We are only concerned with the mean, or expected value, of such intensities.

a

10

10

source

I1 = 2/3

I0 = 1/3
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Macroscopic average behaviour

I This mean intensity can be interpreted as the average behaviour among the N particles:

if we would randomly select one of the particles and subject it to the microscopic
measurement a, we would obtain outcome x with probability Ix :

Ix =
1

N

N∑
i=1

pi (a = x) .

I The situation is analogous to statistical mechanics, where a macrostate arises as an
averaging over an extremely large number of microstates, and hence several different
microstates can correspond to the same macrostate.
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Macroscopic average behaviour: multipartite

I Multipartite macroscopic scenarios

I several ‘macroscopic’ sites consisting of a large number of microscopic sites/particles;

I several (macro) measurement settings at each site.

I Average macroscopic Bell experiment
the (mean) values of the macroscopic intensities indicate the behaviour of a randomly
chosen tuple of particles: one from each of the beams, or sites.

I We’ll show that, as long as there are enough particles (microscopic sites) in each
macroscopic site, such average macroscopic behaviour is always local no matter which
no-signalling model accounts for the underlying microscopic correlations.
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Macroscopic average behaviour: (toy) tripartite example

I We regard sites B and C as forming one ‘macroscopic’ site, M, and A as forming another.

I In order to be ‘lumped together’, B and C must be symmetric/of the same type: the
symmetry identifies the measurements b0 ∼ c0 and b1 ∼ c1, giving rise to ‘macroscopic’
measurements m0 and m1.

I Given a (tripartite) empirical model p(ai , bj , ck = x , y , z), the ‘macroscopic’ average
behaviour is a bipartite model (with two macro sites A and M) given by the following
average of probabilities of the partial models:

p(ai ,mj = x , y) =
p(ai , bj = x , y) + p(ai , cj = x , y)

2
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Example: W state

Z and X measurements on the W state:

000 001 010 011 100 101 110 111
a0b0c0 9 1 1 1 1 1 1 9
a0b0c1 8 2 0 2 0 2 8 2
a0b1c0 8 0 2 2 0 8 2 2
a0b1c1 4 4 4 0 4 4 4 0
a1b0c0 8 0 0 8 2 2 2 2
a1b0c1 4 4 4 4 4 0 4 0
a1b1c0 4 4 4 4 4 4 0 0
a1b1c1 0 8 8 0 8 0 0 0

(every entry should be divided by 24)
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Example: W state

00 01 10 11
a0m0 10 2 2 10
a0m1 8 4 8 4
a1m0 8 8 4 4
a1m1 8 8 8 0

(every entry should be divided by 24)

This is local!
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Another example model

000 001 010 011 100 101 110 111
a0b0c0 1 1 0 0 0 0 1 1
a0b0c1 1 1 0 0 0 0 1 1
a0b1c0 1 1 0 0 0 0 1 1
a0b1c1 1 1 0 0 0 0 1 1
a1b0c0 1 1 0 0 0 0 1 1
a1b0c1 1 1 0 0 0 0 1 1
a1b1c0 0 0 1 1 1 1 0 0
a1b1c1 0 0 1 1 1 1 0 0

(every entry should be divided by 4)
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Another example model

00 01 10 11
a0b0 2 0 0 2
a0b1 2 0 0 2
a1b0 2 0 0 2
a1b1 0 2 2 0

(divided by 4)

maximally non-local

00 01 10 11
a0c0 1 1 1 1
a0c1 1 1 1 1
a1c0 1 1 1 1
a1c1 1 1 1 1

(divided by 4)

local

00 01 10 11
a0m0 3 1 1 3
a0m1 3 1 1 3
a1m0 3 1 1 3
a1m1 1 3 3 1

(every entry should be divided by 8)

Again, this is local!
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Connecting monogamy
and macroscopic averages



A simple observation

Consider any bipartite Bell inequality B(−,−) ≤ R given by coefficients α(i , j , x , y) and bound R.

B(A,M) ≤ R

⇔ ∑
i,j,x,y

α(i , j , x , y)p(ai ,mj = x , y) ≤ R

⇔ ∑
i,j,x,y

α(i , j , x , y)
p(ai , bj = x , y) + p(ai , cj = x , y)

2
≤ R

⇔ ∑
i,j,x,y

α(i , j , x , y)p(ai , bj = x , y) +
∑
i,j,x,y

α(i , j , x , y)p(ai , cj = x , y) ≤ 2R

⇔
B(A,B) + B(A,C) ≤ R

The average model pai ,mj satisfies the Bell inequality if and only if in the microscopic
model Alice is monogamous with respect to violating it with Bob and Charlie.
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A simple observation

I In the two examples above, the average models were local.

I Equivalently, the examples satisfied the monogamy relation for any Bell inequality.

I This is true for all no-signalling empirical models on the tripartite scenario under
consideration, with two measurement settings per site.

I We now give a structural explanation for this...

I . . . which generalises well beyond this particular scenario.
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Vorob'ev’s theorem



Formalising empirical data

A measurement scenario X = 〈X ,Σ,O〉:
I X – a finite set of measurements

I O = (Ox)x∈X – for each x ∈ X a non-empty
set of possible outcomes Ox

I Σ – an abstract simplicial complex on X
faces are called the measurement contexts

An empirical model e = {eσ}σ∈Σ on X:

I each eσ ∈ Prob
(∏

x∈σ Ox

)
is a probability

distribution over joint outcomes for σ.

I generalised no-signalling holds: for any
σ, τ ∈ Σ, if τ ⊆ σ,

eσ|τ = eτ

(i.e. marginals are well-defined)

A B (0, 0) (0, 1) (1, 0) (1, 1)

a0 b0 −− −− −− −−
a0 b1 −− −− −− −−
a1 b0 −− −− −− −−
a1 b1 −− −− −− −−

X = {a0, a1, b0, b1}, Ox = {0, 1}

Σ = ↓ { {a0, b0}, {a0, b1}, {a1, b0}, {a1, b1} }.

•a0 • b0

• a1
•b1

•0
•1

•
•

• 0
• 1

•
•
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Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 20/29



Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 20/29



Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 20/29



Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 20/29



Contextuality

An empirical model e = {eσ}σ∈Σ on a measurement scenario (X ,Σ,O) is non-contextual if
there is a distribution d on

∏
x∈X Ox such that, for all σ ∈ Σ:

d |σ = eσ.

That is, we can glue all the local information together into a global consistent description from
which the local information can be recovered.

If no such global distribution exists, the empirical model is contextual.

Contextuality: family of data that is locally consistent but globally inconsistent.

The import of Bell’s and Kochen–Spekker’s theorems is that there are behaviours arising from
quantum mechanics that are contextual.

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 20/29



Vorob'ev’s theorem
‘Consistent families of measures and their extensions’
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

I In the context of game theory.
I Consider a collection of variables
I and distributions on the joint values of some variables.
I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global proba-
bility distribution for any prescribed pairwise consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any no-signalling (no-
disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity or acyclicity!

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 21/29



Vorob'ev’s theorem
‘Consistent families of measures and their extensions’
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

I In the context of game theory.
I Consider a collection of variables
I and distributions on the joint values of some variables.
I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global proba-
bility distribution for any prescribed pairwise consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any no-signalling (no-
disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity or acyclicity!

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 21/29



Vorob'ev’s theorem
‘Consistent families of measures and their extensions’
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

I In the context of game theory.
I Consider a collection of variables
I and distributions on the joint values of some variables.
I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global proba-
bility distribution for any prescribed pairwise consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any no-signalling (no-
disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity or acyclicity!

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 21/29



Vorob'ev’s theorem
‘Consistent families of measures and their extensions’
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

I In the context of game theory.
I Consider a collection of variables
I and distributions on the joint values of some variables.
I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global proba-
bility distribution for any prescribed pairwise consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any no-signalling (no-
disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity

or acyclicity!

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 21/29



Vorob'ev’s theorem
‘Consistent families of measures and their extensions’
Vorob'ev, Theory Probab. Appl. 7(2), 1962.

I In the context of game theory.
I Consider a collection of variables
I and distributions on the joint values of some variables.
I These distributions are pairwise consistent.

What conditions on the arrangement guarantee that there is a global proba-
bility distribution for any prescribed pairwise consistent distrbutions?

In our language:

For which measurement scenarios is it the case that any no-signalling (no-
disturbing) behaviour is non-contextual?

I Necessary and sufficient condition: regularity or acyclicity!

RS Barbosa From Vorob'ev’s theorem to monogamy of non-locality and local macroscopic averages 21/29



Acyclicity

I Graham reduction step: delete a vertex that belongs to only one maximal face.

I Σ acyclic when it is Graham reducible to the empty simplex.

a

b

c

d

e

b

c

d

e

a

b

c

d

e

b

c

d

e

b

c

d b d b

∅

I Σ not acyclic: Graham reduction fails.

a

b

c

d

e

b

c

d

e
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Vorob'ev’s theorem

Theorem (Vorob'ev 1962, adapted)
All empirical models on Σ are extendable iff Σ is acyclic
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A structural explanation



Structural reason

a0 a1

b0

b1

c0

c1

I Measurement scenario: simplicial complex D2 ∗D2 ∗D2.
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Structural reason

a0 a1

m0

m1

I This quotient complex is acyclic.

I Therefore, no matter from which micro model pai ,bj ,ck we start, the averaged macro
correlations pai ,mj are local.

I In particular, they satisfy any Bell inequality.

I Hence, the original tripartite model also satisfies a monogamy relation for any Bell inequality.
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A non-acyclic example

Let B and C have 3 measurement settings: D2 ∗D3 ∗D3 = D2 ∗D(∗2)
3 . (only depicted half)

a0

b0

b1
b2

c0

c1
c2

a0

m0

m1 m2
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General multipartite scenarios
I Consider n macroscopic sites A,B,C , . . .
I with ki measurement settings at site i

I (n-partite Bell inequality B(A,B,C , . . .) on scenario Dk1 ∗ · · · ∗Dkn)

I Take ri copies of each site i , or ri micro sites constituting i . For a macro site A:
I copies / micro sites: A(1), . . . ,A(r1)

I measurement settings at A(m): a
(m)
1 , . . . , a

(m)
kA

Scenario: Σn,~k,~r := D
(∗r1)
k1
∗ · · · ∗D(∗rn)

kn

I Symmetry by Sr1 × · · · × Srn identifies the copies at each macro site.

a
(1)
j ∼ · · · ∼ a

(rA)
j (∀j ∈ {1, . . . , kA}),

b
(1)
j ∼ · · · ∼ a

(rA)
j (∀j ∈ {1, . . . , kA}),
etc.
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General multipartite scenarios

Proposition
The quotient of the measurement scenario Σn,~k,~r by the symmetry above is acyclic iff

one of
the following holds:

I each site has at least as many microscopic sites or copies as it has measurement settings, i.e.
∀i ∈ {1, . . . , n}. ki ≤ ri ;

I one of the sites has a single copy and the condition above is satisfied by all the other sites,

i.e. ∃i0.
(
ri0 = 1 ∧ ∀i ∈ {1, . . . î0 . . . , n}. ki ≤ ri

)
.

We get monogamy relations

rB∑
mB=1

rC∑
mC =1

· · · B(A,B(mB ),C (mC ), . . .) ≤ rB rC · · · R
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General construction

I A symmmetry (G -action) on Σ identifies measurements.

I A model satisfies a G -monogamy relation for a given Bell inequality iff the macroscopic
average correlations (i.e. the quotient model by G ) satisfy the Bell inequality.

I If the quotient scenario Σ/G is acyclic, then:

I all no-signalling / no-disturbing empirical models on Σ are G -monogamous with respect to
all Bell inequalities;

I since the average model, being defined on this quotient scenario, must be local/non-contextual.

I The approach is not restricted to multipartite Bell-type scenarios. More generally, we can
apply the same ideas to derive monogamy relations for contextuality inequalities.
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Questions...

?
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