
Closing Bell
Boxing black box transformations in the resource theory of contextuality

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

Martti Karvonen

martti.karvonen@uottawa.ca

Shane Mansfield

shane.mansfield@quandela.com

18th International Conference on Quantum Physics and Logic (QPL 2021)
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In a nutshell. . .
I Contextuality is a quintessential marker of non-classicality, an empirical phenomenon

distinguishing QM from classical physical theories.

I It has been established as a useful resource conferring advantage in informatic tasks.

I Resource theory

I focus shifts from objects (empirical models e : S) to morphisms (convertibility).
I d  e simulation of empirical model e : T using empirical model d : S .

I The ‘free’ operations are given by classical procedures S −→ T .
I In this talk, we focus only on non-adaptive procedures.

I Q: Which maps F : Emp(S) −→ Emp(T ) arise from classical procedures S −→ T?

I Construct a scenario [S ,T ] from S and T .
I F yields an empirical model eF : [S ,T ].
I F realisable by classical procedure S −→ T iff eF is noncontextual (and satisfies a certain predicate)

I [−,−] provides a closed structure on the category of measurement scenarios (rather: on a
variant of it)
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Contextuality



Type or interface: measurement scenario

I Interaction with system: perform measurements
and observe respective outcomes

Compatibility of measurements

I Some subsets of measurements can be performed
together . . .

I but some combinations are forbibben!
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Behaviour: empirical model

I Behaviour of system is described by measurement
statistics

(0, 0) (0, 1) (1, 0) (1, 1)
x y

3/8 1/8 1/8 3/8

y z

3/8 1/8 1/8 3/8

x z

1/8 3/8 3/8 1/8

No-signalling / no-disturbance

I Marginal distributions agree

∑
b

P(x, y 7→ a, b)

=

∑
c

P(x, z 7→ a, c)

=

P(x 7→ a)

4 / 21
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Contextuality

Non-contextual model
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Contextuality

Contextual model

6=
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Resource theory of contextuality



Resource theories

I Consider ‘free’ (i.e. classical) operations:
(classical) procedures that use a box of type S to simulate a box of type T
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Experiments and procedures

I An S-experiment is a protocol for an interaction
with the box S :

I which measurements to perform;

I how to interpret their joint outcome into an
outcome of the intended type.

I A deterministic procedure S −→ T specifies an
S-experiment for each measurement of T

I A classical procedure is a probabilistic mixture
of deterministic procedures.
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Classical simulations

I A classical procedure induces a (convex-preserving) map between empirical models:

f : S −→ T Emp(f ) : Emp(S) −→ Emp(T )

 

I Which black-box transformations arise in this fashion?
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Main question and sketch of the answer



Main question

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

?
=

10 / 21



Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given ,

?
=

11 / 21



Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given ,

?
=

11 / 21



Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given F : Emp(I ) −→ Emp(T ), can it be realised by an classical procedure?
I.e. is there a procedure f : I −→ T s.t. F = Emp(f )?

?
=

11 / 21



Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given F : {?} −→ Emp(T ), can it be realised by an classical procedure? I.e.
is there a procedure f : I −→ T s.t. F = Emp(f )?

?
=

11 / 21



Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given an empirical model e ∈ Emp(T ), can it be realised by an classical
procedure? I.e. is there a procedure f : I −→ T s.t. F = Emp(f )?

?
=

11 / 21



Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given an empirical model e ∈ Emp(T ), is it noncontextual?

(Non-contextual models are those which can be simulated from nothing.)

?
=

11 / 21



Relativising contextuality

Given F : Emp(S) −→ Emp(T ), can it be realised by an experimental
procedure? I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

Special case S = I

Given an empirical model e ∈ Emp(T ), is it noncontextual?
(Non-contextual models are those which can be simulated from nothing.)

?
=

11 / 21



From objects to morphisms . . .

and back!

Given F : Emp(S) −→ Emp(T ), can it be realised by an classical procedure?
I.e. is there a procedure f : S −→ T s.t. F = Emp(f )?

is special case of

Given an empirical model, is it noncontextual?
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Answering the question by internalisation

From two scenarios S and T , we build a new scenario [S ,T ].
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Further details



The hom scenario [S,T]

I Measurements are those of T .

I Outcomes of a measurement x from T are protocols
to interact with S and produce an outcome for x .

I Protocols given as joint outcomes to compatible
measurements must be jointly performable.
This guarantee is captured by the predicate

g
[S,T ]

: [S ,T ] −→ 2 .

I Noncontextual models have predetermined choice of
outcome (S-protocol) for each measurement in T ,
i.e. are classical procedures S −→ T .
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Evaluation map
ev : [S ,T ] “⊗” S −→ T
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Answering it for experiments

Facts:

I Every no-signalling empirical model is an affine mixture of deterministic models.

I A function Emp(S) −→ Emp(T ) that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function Emp(S) −→ D({1, . . . n}) is determined by its action
on deterministic models, Det(S).

In turn, Det(S) −→ D({1, . . . , n}) yields a convex mixture of functions Det(S) −→ {1, . . . , n}.

Fact:

I For any function f out of Det(S), there is a smallest set Uf of measurements needed to
implement f .

Thus, f is induced by a deterministic experiment iff Uf is a compatible set of measurements.

Similarly,
∑

ri fi is induced by an experiment if each Ufi is a compatible set of measurements.
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Internalisation

As before, a convex-preserving map F : Emp(S) −→ Emp(T ) is determined by its action on
Det(S).

Given a compatible set of measurements on T , we then get a mixture of deterministic functions
from Det(S) to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data – an empirical model?

Lemma
A convex-preserving function F : Emp(S) −→ Emp(T ) induces a canonical no-signalling
empirical model eF : [S ,T ].
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Main results

Theorem
F is induced by a classical procedure iff eF is non-contextual and satisfies g[S,T ].

I The theorem suggests working with pairs 〈S , g : S −→ 2〉 as our basic objects.

I A morphism f : 〈S , g〉 −→ 〈T , h〉 is given by a procedure f : S −→ T such that

e : S satisfies g =⇒ Emp(f ) e : T satisfies h.

Theorem
[−,−] (appropriately modified) makes this category into a closed category.
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Outlook



Further questions

I External characterisation of adaptive procedures?
Note that [S ,T ] can be defined in the adaptive case, but there is no obvious way of building a

canonical adaptive empirical model out of a convex-preserving function Emp(S) −→ Emp(T ).

I Doing the same possibilistically?

I Does the set of all predicates on S generalise partial Boolean algebras to arbitrary
measurement compatibility structures?

I Examining the closed structure?
Note that it’s not monoidal wrt. the usual monoidal structure, but seems closed wrt a ‘directed’

tensor product.
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Questions...

?
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