Free transformations in the resource theory of contextuality

Rui Soares Barbosa

N
rui.soaresbarbosa@inl.int

Martti Karvonen
martti.karvonen@uottawa.ca

Shane Mansfield

^Quandela

shane.mansfield@quandela.com

QCQMB colloquium 20th October 2021

This talk

- Pre-print available at arXiv:2104.11241 [quant-ph].

Quantum Physics

[Submitted on 22 Apr 2021]

Closing Bell: Boxing black box simulations in the resource theory of contextuality

Rui Soares Barbosa, Martti Karvonen, Shane Mansfield

This chapter contains an exposition of the sheaf-theoretic framework for contextuality emphasising resource-theoretic aspects, as well as some original results on this topic. In particular, we consider functions that transform empirical models on a scenario S to empirical models on another scenario T, and characterise those that are induced by classical procedures between S and T corresponding to 'free' operations in the (non-adaptive) resource theory of contextuality. We proceed by expressing such functions as empirical models themselves, on a new scenario built from S and T. Our characterisation then boils down to the non-contextuality of these models. We also show that this construction on scenarios provides a closed structure in the category of measurement scenarios.

[^0]
This talk

- Pre-print available at arXiv:2104.11241 [quant-ph].
- To appear in a volume of Springer's Outstanding Contributions to Logic series.

In a nutshell...

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.

In a nutshell...

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.

In a nutshell. . .

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory

In a nutshell...

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.

In a nutshell. . .

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.

In a nutshell. . .

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.

In a nutshell. . .

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.
- Q: Which maps $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?

In a nutshell. . .

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.
- Q: Which maps $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
- Construct a scenario $[S, T]$ from S and T.

In a nutshell. . .

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.
- Q: Which maps $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
- Construct a scenario $[S, T]$ from S and T.
- F yields an empirical model $e_{F}:[S, T]$.

In a nutshell...

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.
- Q: Which maps $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
- Construct a scenario $[S, T]$ from S and T.
- F yields an empirical model $e_{F}:[S, T]$.
- F realisable by classical procedure $S \longrightarrow T$ iff e_{F} is noncontextual

In a nutshell...

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.
- Q: Which maps $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
- Construct a scenario $[S, T]$ from S and T.
- F yields an empirical model $e_{F}:[S, T]$.
- F realisable by classical procedure $S \longrightarrow T$ iff e_{F} is noncontextual (and satisfies a certain predicate).

In a nutshell. . .

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
- focus shifts from objects (empirical models $e: S$) to morphisms (convertibility).
$\downarrow d \rightsquigarrow e \quad$ simulation of empirical model $e: T$ using empirical model $d: S$.
- The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.
- Q: Which maps $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
- Construct a scenario $[S, T]$ from S and T.
- F yields an empirical model $e_{F}:[S, T]$.
- F realisable by classical procedure $S \longrightarrow T$ iff e_{F} is noncontextual (and satisfies a certain predicate).
- [-, -] provides a closed structure on (a variant of) the category of measurement scenarios.

Contextuality

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...
- but some combinations are forbibben!

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...
- but some combinations are forbibben!

Type or interface: measurement scenario

- Interaction with system: perform measurements and observe respective outcomes

Compatibility of measurements

- Some subsets of measurements can be performed together ...
- but some combinations are forbibben!

Type or interface: measurement scenario

Type or interface: measurement scenario

Measurement scenario $S=\left\langle X_{S}, \Sigma_{S}, O_{S}\right\rangle$:

Type or interface: measurement scenario

Measurement scenario $S=\left\langle X_{S}, \Sigma_{S}, O_{S}\right\rangle$:

- X_{S} is a finite set of measurements;

$$
X_{S}=\{x, y, z\}
$$

Type or interface: measurement scenario

Measurement scenario $S=\left\langle X_{S}, \Sigma_{S}, O_{S}\right\rangle$:

- X_{S} is a finite set of measurements;
- $O_{S}=\left(O_{S, x}\right)_{x \in X_{S}}$ specifies for each $x \in X_{S}$ a non-empty set $O_{s, x}$ of allowed outcomes

$$
X_{S}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \quad O_{S, \mathrm{x}}=O_{S, \mathrm{y}}=O_{S, \mathrm{z}}=\{0,1\},
$$

Type or interface: measurement scenario

Measurement scenario $S=\left\langle X_{S}, \Sigma_{S}, O_{S}\right\rangle$:

- X_{S} is a finite set of measurements;
- $O_{S}=\left(O_{S, x}\right)_{x \in X_{S}}$ specifies for each $x \in X_{S}$ a non-empty set $O_{s, x}$ of allowed outcomes
- Σ_{S} is an abstract simplicial complex on X_{S} whose faces are the measurement contexts;

$$
X_{S}=\{x, y, z\}, \quad O_{S, x}=O_{S, y}=O_{S, z}=\{0,1\},
$$

Type or interface: measurement scenario

Measurement scenario $S=\left\langle X_{S}, \Sigma_{S}, O_{S}\right\rangle$:

- X_{S} is a finite set of measurements;
- $O_{S}=\left(O_{S, x}\right)_{x \in X_{S}}$ specifies for each $x \in X_{S}$ a non-empty set $O_{s, x}$ of allowed outcomes
- Σ_{S} is an abstract simplicial complex on X_{S} whose faces are the measurement contexts; i.e. a set of subsets of X_{s} that:
- contains all singletons:
$\{x\} \in \Sigma_{S}$ for all $x \in X_{S} ;$
- is downwards closed:
$\sigma \in \Sigma_{S}$ and $\tau \subset \sigma$ implies $\tau \in \Sigma_{S}$.

$$
X_{S}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \quad O_{S, \mathrm{x}}=O_{S, \mathrm{y}}=O_{S, \mathrm{z}}=\{0,1\},
$$

Type or interface: measurement scenario

Measurement scenario $S=\left\langle X_{S}, \Sigma_{S}, O_{S}\right\rangle$:

- X_{S} is a finite set of measurements;
- $O_{S}=\left(O_{S, x}\right)_{x \in X_{S}}$ specifies for each $x \in X_{S}$ a non-empty set $O_{s, x}$ of allowed outcomes
- Σ_{S} is an abstract simplicial complex on X_{S} whose faces are the measurement contexts; i.e. a set of subsets of X_{s} that:
- contains all singletons:
$\{x\} \in \Sigma_{S}$ for all $x \in X_{S} ;$
- is downwards closed:
$\sigma \in \Sigma_{S}$ and $\tau \subset \sigma$ implies $\tau \in \Sigma_{S}$.

$$
X_{S}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}, \quad O_{S, \mathrm{x}}=O_{S, \mathrm{y}}=O_{S, \mathrm{z}}=\{0,1\}, \quad \Sigma_{S}=\downarrow\{\{\mathrm{x}, \mathrm{y}\},\{\mathrm{y}, \mathrm{z}\},\{\mathrm{x}, \mathrm{z}\}\} .
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y				
y	z				
x	z				

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(1, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	
y	z				
x	z				

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(1, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z				
x	z				

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(0,0)$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1 , 1} \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$			
x	z				

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
P(x, \mathbf{y} \mapsto a, b)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
P(x, \mathbf{y} \mapsto a, b)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\sum_{b} P(x, y \mapsto a, b)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\sum_{b} P(x, y \mapsto a, b)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\sum_{b} P(x, y \mapsto a, b) \quad P(x, z \mapsto a, c)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\sum_{b} P(x, y \mapsto a, b) \quad P(x, z \mapsto a, c)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\sum_{b} P(x, y \mapsto a, b) \quad \sum_{c} P(x, z \mapsto a, c)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\sum_{b} P(x, y \mapsto a, b)=\sum_{c} P(x, z \mapsto a, c)
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\begin{gathered}
\sum_{b} P(x, y \mapsto a, b) \quad \sum_{c} P(x, z \mapsto a, c) \\
= \\
P(x \mapsto a)
\end{gathered}
$$

Behaviour: empirical model

- Behaviour of system is described by measurement statistics

		$(\mathbf{0}, \mathbf{0})$	$(\mathbf{0}, \mathbf{1})$	$(\mathbf{1}, \mathbf{0})$	$(\mathbf{1}, \mathbf{1})$
x	y	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
y	z	$3 / 8$	$1 / 8$	$1 / 8$	$3 / 8$
x	z	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

No-signalling / no-disturbance

- Marginal distributions agree

$$
\begin{gathered}
\sum_{b} P(x, y \mapsto a, b) \quad \sum_{c} P(x, z \mapsto a, c) \\
= \\
P(x \mapsto a)
\end{gathered}
$$

Behaviour: empirical model

Empirical model e:S is a family $\left\{e_{\sigma}\right\}_{\sigma \in \Sigma_{s}}$ where:

- e_{σ} is a probability distribution on the set of joint outcomes $\mathbf{O}_{S, \sigma}:=\prod_{x \in \sigma} O_{S, x}$
- These satisfy no-disturbance: if $\tau \subset \sigma$, then $\left.e_{\sigma}\right|_{\tau}=e_{\tau}$.

Contextuality

Deterministic model

Contextuality

Non-contextual model

Contextuality

Non-contextual model

\exists probability distribution d on $\mathbf{O}_{S, X_{S}}=\prod_{x \in X_{S}} O_{S, x}$ such that $\left.d\right|_{\sigma}=e_{\sigma}$ for all $\sigma \in \Sigma_{S}$.

Contextuality

Contextual model

\nexists probability distribution d on $\mathbf{O}_{S, X_{S}}=\prod_{x \in X_{S}} O_{S, x}$ such that $\left.d\right|_{\sigma}=e_{\sigma}$ for all $\sigma \in \Sigma_{S}$.

Resource theory of contextuality

Resource theories

Resource theories

- Consider 'free' (i.e. classical) operations:

Resource theories

- Consider 'free' (i.e. classical) operations:
(classical) procedures that use a box of type S to simulate a box of type T

Experiments and procedures

- An O-valued S-experiment is a protocol for an interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.

Experiments and procedures

- An O-valued S-experiment is a protocol for an interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.

Experiments and procedures

- An O-valued S-experiment is a protocol for an interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.

Experiments and procedures

- An O-valued S-experiment is a protocol for an interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.

Experiments and procedures

- An O-valued S-experiment is a protocol for an interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.

Experiments and procedures

- An O-valued S-experiment is a protocol for an interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.

Experiments and procedures

- An O-valued S-experiment is a protocol for an
 interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.
- A deterministic procedure $S \longrightarrow T$ specifies an S-experiment ($O_{T, x}$-valued) for each measurement x of T.

Experiments and procedures

- An O-valued S-experiment is a protocol for an
 interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.
- A deterministic procedure $S \longrightarrow T$ specifies an S-experiment ($O_{T, x}$-valued) for each measurement x of T.

Experiments and procedures

- An O-valued S-experiment is a protocol for an
 interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.
- A deterministic procedure $S \longrightarrow T$ specifies an S-experiment ($O_{T, x}$-valued) for each measurement x of T. (subject to compatibility conditions)

Experiments and procedures

- An O-valued S-experiment is a protocol for an
 interaction with the box S producing a value in O :
- which measurements to perform;
- how to interpret their joint outcome into an outcome in O.
- A deterministic procedure $S \longrightarrow T$ specifies an S-experiment ($O_{T, x}$-valued) for each measurement x of T. (subject to compatibility conditions)
- A classical procedure is a probabilistic mixture of deterministic procedures.

Classical procedures and simulations

Classical procedures

Deterministic procedure $f: S \longrightarrow T$ is $\left\langle\pi_{f}, \alpha_{f}\right\rangle$:

Classical procedures

Deterministic procedure $f: S \longrightarrow T$ is $\left\langle\pi_{f}, \alpha_{f}\right\rangle$:

- $\pi_{f}: \Sigma_{T} \longrightarrow \Sigma_{S}$ is a simplicial relation:

Classical procedures

Deterministic procedure $f: S \longrightarrow T$ is $\left\langle\pi_{f}, \alpha_{f}\right\rangle$:

- $\pi_{f}: \Sigma_{T} \longrightarrow \Sigma_{S}$ is a simplicial relation:
- for each $x \in X_{T}$ specifies $\pi_{f}(x) \subset X_{S}$

Classical procedures

Deterministic procedure $f: S \longrightarrow T$ is $\left\langle\pi_{f}, \alpha_{f}\right\rangle$:

- $\pi_{f}: \Sigma_{T} \longrightarrow \Sigma_{S}$ is a simplicial relation:
- for each $x \in X_{T}$ specifies $\pi_{f}(x) \subset X_{S}$
- If $\sigma \in \Sigma_{T}$ then $\pi_{f}(\sigma) \in \Sigma_{S}$, where

$$
\pi_{f}(\sigma)=\cup_{x \in \sigma} \pi_{f}(x)
$$

Classical procedures

Deterministic procedure $f: S \longrightarrow T$ is $\left\langle\pi_{f}, \alpha_{f}\right\rangle$:

- $\pi_{f}: \Sigma_{T} \longrightarrow \Sigma_{S}$ is a simplicial relation:
- for each $x \in X_{T}$ specifies $\pi_{f}(x) \subset X_{S}$
- If $\sigma \in \Sigma_{T}$ then $\pi_{f}(\sigma) \in \Sigma_{S}$, where

$$
\pi_{f}(\sigma)=\cup_{x \in \sigma} \pi_{f}(x)
$$

- $\alpha_{f}=\left(\alpha_{f, x}\right)_{x \in X_{T}}$ where $\alpha_{f, x}: \mathbf{O}_{S, \pi_{f}(x)} \longrightarrow O_{T, x}$ maps joint outcomes of $\pi_{f}(x)$ to outcomes of x.

Classical procedures

Deterministic procedure $f: S \longrightarrow T$ is $\left\langle\pi_{f}, \alpha_{f}\right\rangle$:

- $\pi_{f}: \Sigma_{T} \longrightarrow \Sigma_{S}$ is a simplicial relation:
- for each $x \in X_{T}$ specifies $\pi_{f}(x) \subset X_{S}$
- If $\sigma \in \Sigma_{T}$ then $\pi_{f}(\sigma) \in \Sigma_{S}$, where

$$
\pi_{f}(\sigma)=\cup_{x \in \sigma} \pi_{f}(x)
$$

- $\alpha_{f}=\left(\alpha_{f, x}\right)_{x \in X_{T}}$ where $\alpha_{f, x}: \mathbf{O}_{S, \pi_{f}(x)} \longrightarrow O_{T, x}$ maps joint outcomes of $\pi_{f}(x)$ to outcomes of x.

Probabilistic procedure $f: S \longrightarrow T$ is $f=\sum_{i} r_{i} f_{i}$ where $r_{i} \geq 0, \sum_{i} r_{i}=1$, and $f_{i}: S \longrightarrow T$ deterministic procedures.

Classical simulations

- A classical procedure induces a (convex-preserving) map between empirical models:

$$
f: S \longrightarrow T
$$

$\operatorname{Emp}(f): \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$

Classical simulations

- A classical procedure induces a (convex-preserving) map between empirical models:

$$
f: S \longrightarrow T
$$

$\operatorname{Emp}(f): \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$

- Which black-box transformations arise in this fashion?

Characterising free transformations

Main question and sketch of the answer

Main question

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by a classical procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Relativising contextuality

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Relativising contextuality

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Special case $S=I$

Relativising contextuality

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Special case $S=I$
Given $F: \operatorname{Emp}(I) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f: I \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Relativising contextuality

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Special case $S=I$
Given $F:\{\star\} \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure? I.e.
is there a procedure $f: I \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Relativising contextuality

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Special case $S=I$
Given an empirical model $e \in \operatorname{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f: I \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Relativising contextuality

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Special case $S=I$
Given an empirical model $e \in \operatorname{Emp}(T)$, is it noncontextual?

Relativising contextuality

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Special case $S=I$
Given an empirical model $e \in \operatorname{Emp}(T)$, is it noncontextual?
(Non-contextual models are those which can be simulated from nothing.)

From objects to morphisms ...

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure?
I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Given an empirical model, is it noncontextual?

From objects to morphisms ... and back!

Given $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$, can it be realised by an classical procedure?
I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F=\operatorname{Emp}(f)$?

Given an empirical model, is it noncontextual?

Answering the question by internalisation

From two scenarios S and T, we build a new scenario $[S, T]$.

Answering the question by internalisation

[^1]
Answering the question by internalisation

A convex preserving $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_{F}:[S, T]$.

Answering the question by internalisation

A convex preserving $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_{F}:[S, T]$. F is realised by a deterministic procedure

Answering the question by internalisation

A convex preserving $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_{F}:[S, T]$. F is realised by a deterministic procedure iff e_{F} is deterministic.

Answering the question by internalisation

A convex preserving $F: \operatorname{Emp}(S) \longrightarrow \mathbf{E m p}(T)$ induces a canonical model $e_{F}:[S, T]$. F is realised by a deterministic procedure iff e_{F} is deterministic.
F is realised by a classical procedure iff e_{F} is non-contextual.

Answering the question by internalisation

A convex preserving $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ induces a canonical model $e_{F}:[S, T]$. F is realised by a deterministic procedure iff e_{F} is deterministic and satisfies $g_{[S, T]}$. F is realised by a classical procedure iff e_{F} is non-contextual and satisfies $g_{[S, T]}$.

Further details

- Measurements are those of T.

The hom scenario $[\mathrm{S}, \mathrm{T}]$

- Measurements are those of T.
- Outcomes of a measurement \times from T are protocols to interact with S and produce an outcome for x.

The hom scenario $[\mathrm{S}, \mathrm{T}]$

- Measurements are those of T.

- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable.

The hom scenario $[\mathrm{S}, \mathrm{T}]$

- Measurements are those of T.
- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable. This guarantee is captured by the predicate

$$
g_{[S, T]}:[S, T] \longrightarrow \mathbf{2} .
$$

The hom scenario $[\mathrm{S}, \mathrm{T}]$

- Measurements are those of T.
- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable. This guarantee is captured by the predicate

$$
g_{[S, T]}:[S, T] \longrightarrow \mathbf{2} .
$$

- Noncontextual models have predetermined choice of outcome (S-protocol) for each measurement in T, i.e. are classical procedures $S \longrightarrow T$.

The hom scenario $[\mathrm{S}, \mathrm{T}]$

- Measurements are those of T.

- Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable. This guarantee is captured by the predicate

$$
g_{[S, T]}:[S, T] \longrightarrow \mathbf{2} .
$$

- Noncontextual models have predetermined choice of outcome (S-protocol) for each measurement in T, i.e. are classical procedures $S \longrightarrow T$.

Evaluation map

$$
\text { ev : }[S, T] \text { " } \otimes>" S \longrightarrow " T
$$

Evaluation map

Evaluation map

Evaluation map

Evaluation map

$$
\text { ev : }[S, T] \text { " } \otimes \gg " \longrightarrow " T
$$

∞

Evaluation map

$$
\text { ev : }[S, T] \text { " } \otimes \text { " } S \text { " } \longrightarrow " T
$$

Evaluation map

$$
\text { ev : }[S, T] \text { " } \otimes " S \text { " } \longrightarrow " T
$$

$\bigcirc \circ \circ \circ$

Evaluation map

$$
\text { ev : }[S, T] \text { " } \otimes>\text { " } S \text { " } \longrightarrow " T
$$

Evaluation map

$$
\text { ev : }[S, T] \text { " } \otimes " S \text { " } \longrightarrow " T
$$

Answering the question I

Facts:

- Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Answering the question I

Facts:

- Every no-signalling empirical model is an affine mixture of deterministic models.
- A function $\operatorname{Emp}(S) \longrightarrow \mathbf{E m p}(T)$ that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ is determined by its action on deterministic models, $\operatorname{Det}(S)$.

Answering the question II: for experiments

An S-experiment valued in $\{1, \ldots, n\}$ is a classical procedure $S \longrightarrow \mathbf{n}$.

- \mathbf{n} is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- $\operatorname{Emp}(\mathbf{n}) \cong \mathrm{D}(\{1, \ldots, n\})$.

Answering the question II: for experiments

An S-experiment valued in $\{1, \ldots, n\}$ is a classical procedure $S \longrightarrow \mathbf{n}$.

- \mathbf{n} is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- $\operatorname{Emp}(\mathbf{n}) \cong \mathrm{D}(\{1, \ldots, n\})$.

A convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(\mathbf{n})$ is determined by action on $\operatorname{Det}(S)$.

Answering the question II: for experiments

An S-experiment valued in $\{1, \ldots, n\}$ is a classical procedure $S \longrightarrow \mathbf{n}$.

- \mathbf{n} is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- $\operatorname{Emp}(\mathbf{n}) \cong \mathrm{D}(\{1, \ldots, n\})$.

A convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(\mathbf{n})$ is determined by action on $\operatorname{Det}(S)$.
In turn, $\operatorname{Det}(S) \longrightarrow \mathrm{D}(\{1, \ldots, n\})$ yields a convex mixture of functions $\operatorname{Det}(S) \longrightarrow\{1, \ldots, n\}$.

Answering the question II: for experiments

An S-experiment valued in $\{1, \ldots, n\}$ is a classical procedure $S \longrightarrow \mathbf{n}$.

- \mathbf{n} is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- $\operatorname{Emp}(\mathbf{n}) \cong \mathrm{D}(\{1, \ldots, n\})$.

A convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(\mathbf{n})$ is determined by action on $\operatorname{Det}(S)$.
In turn, $\operatorname{Det}(S) \longrightarrow \mathrm{D}(\{1, \ldots, n\})$ yields a convex mixture of functions $\operatorname{Det}(S) \longrightarrow\{1, \ldots, n\}$.

Fact:

- For any function f out of $\operatorname{Det}(S)$, there is a smallest set U_{f} of measurements needed to implement f.

Answering the question II: for experiments

An S-experiment valued in $\{1, \ldots, n\}$ is a classical procedure $S \longrightarrow \mathbf{n}$.

- \mathbf{n} is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
$-\operatorname{Emp}(\mathbf{n}) \cong \mathrm{D}(\{1, \ldots, n\})$.
A convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(\mathbf{n})$ is determined by action on $\operatorname{Det}(S)$.
In turn, $\operatorname{Det}(S) \longrightarrow \mathrm{D}(\{1, \ldots, n\})$ yields a convex mixture of functions $\operatorname{Det}(S) \longrightarrow\{1, \ldots, n\}$.

Fact:

- For any function f out of $\operatorname{Det}(S)$, there is a smallest set U_{f} of measurements needed to implement f.

Thus, f is induced by a deterministic experiment iff U_{f} is a compatible set of measurements.

Answering the question II: for experiments

An S-experiment valued in $\{1, \ldots, n\}$ is a classical procedure $S \longrightarrow \mathbf{n}$.

- \mathbf{n} is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- $\operatorname{Emp}(\mathbf{n}) \cong \mathrm{D}(\{1, \ldots, n\})$.

A convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(\mathbf{n})$ is determined by action on $\operatorname{Det}(S)$.
In turn, $\operatorname{Det}(S) \longrightarrow \mathrm{D}(\{1, \ldots, n\})$ yields a convex mixture of functions $\operatorname{Det}(S) \longrightarrow\{1, \ldots, n\}$.

Fact:

- For any function f out of $\operatorname{Det}(S)$, there is a smallest set U_{f} of measurements needed to implement f.

Thus, f is induced by a deterministic experiment iff U_{f} is a compatible set of measurements. Similarly, $\sum r_{i} f_{i}$ is induced by an experiment if each $U_{f_{i}}$ is a compatible set of measurements.

Answering the question III: internalisation

A convex-preserving map $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ is determined by its action on $\operatorname{Det}(S)$.

Answering the question III: internalisation

A convex-preserving map $F: \operatorname{Emp}(S) \longrightarrow \mathbf{E m p}(T)$ is determined by its action on $\operatorname{Det}(S)$.
Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\operatorname{Det}(S)$ to joint outcomes of these measurements.

Answering the question III: internalisation

A convex-preserving map $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ is determined by its action on $\operatorname{Det}(S)$.
Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\operatorname{Det}(S)$ to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

Answering the question III: internalisation

A convex-preserving map $F: \operatorname{Emp}(S) \longrightarrow \mathbf{E m p}(T)$ is determined by its action on $\operatorname{Det}(S)$.
Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\operatorname{Det}(S)$ to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data - an empirical model?

Answering the question III: internalisation

A convex-preserving map $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ is determined by its action on $\operatorname{Det}(S)$.
Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\operatorname{Det}(S)$ to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data - an empirical model?

Lemma

A convex-preserving function $F: \mathbf{E m p}(S) \longrightarrow \mathbf{E m p}(T)$ induces a canonical no-signalling empirical model $e_{F}:[S, T]$.

Main results

Theorem

F is induced by a classical procedure iff e_{F} is non-contextual and satisfies $g_{[S, T]}$.

Caveat: adding predicates

Caveat: adding predicates

$g_{[S, T]}:[S, T] \longrightarrow \mathbf{2}$

Caveat: adding predicates

Caveat: adding predicates

$g_{[S, T]}:[S, T] \longrightarrow \mathbf{2}$

Main results

Theorem

F is induced by a classical procedure iff e_{F} is non-contextual and satisfies $g_{[S, T]}$.

- The theorem suggests working with pairs $\langle S, g: S \longrightarrow \mathbf{2}\rangle$ as our basic objects.

Main results

Theorem

F is induced by a classical procedure iff e_{F} is non-contextual and satisfies $g_{[S, T]}$.

- The theorem suggests working with pairs $\langle S, g: S \longrightarrow \mathbf{2}\rangle$ as our basic objects.
- A morphism $f:\langle S, g\rangle \longrightarrow\langle T, h\rangle$ is given by a procedure $f: S \longrightarrow T$ such that $e: S$ satisfies $g \Longrightarrow \operatorname{Emp}(f) e: T$ satisfies h.

Main results

Theorem

F is induced by a classical procedure iff e_{F} is non-contextual and satisfies $g_{[S, T]}$.

- The theorem suggests working with pairs $\langle S, g: S \longrightarrow \mathbf{2}\rangle$ as our basic objects.
- A morphism $f:\langle S, g\rangle \longrightarrow\langle T, h\rangle$ is given by a procedure $f: S \longrightarrow T$ such that $e: S$ satisfies $g \Longrightarrow \operatorname{Emp}(f) e: T$ satisfies h.

Theorem
[-, -] (appropriately modified) makes this category into a closed category.

Closed structure

Getting closure

$$
[S, T] " \otimes " S \longrightarrow T
$$

Getting closure

$$
\begin{aligned}
& {[S, T] \text { " } \otimes \text { " } S \longrightarrow T} \\
& s \cong\lfloor[, S] \\
& {[S, T] \text { " } \otimes \text { " }[I, S] \longrightarrow[I, T]}
\end{aligned}
$$

Getting closure

$$
\begin{aligned}
& {[S, T] \text { " "" } S \longrightarrow T} \\
& S \cong[I, S] \\
& {[S, T] \text { " } \otimes \text { " }[I, S] \longrightarrow[I, T]} \\
& \text { generalise } \\
& {[S, T] \text { " } \otimes \text { " }[R, S] \longrightarrow[R, T]}
\end{aligned}
$$

Getting closure

Getting closure

Closed category

$$
[-,-]: \text { Scen }^{\text {op }} \times \text { Scen } \longrightarrow \text { Scen }
$$

- is : $S \xrightarrow{\cong}[I, S]$ natural in S
- $j_{S}: I \longrightarrow[S, S]$ extranatural in S (identity transformations)
- $\mathrm{L}_{S, T}^{R}:[S, T] \longrightarrow[[R, S],[R, T]]$ natural in S, T, extranatural in R (curried composition)
- + reasonable coherence axioms

Outlook

Further questions

- External characterisation of adaptive procedures?

Note that $[S, T]$ can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$.

Further questions

- External characterisation of adaptive procedures?

Note that $[S, T]$ can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$.

- Doing the same possibilistically?

Further questions

- External characterisation of adaptive procedures?

Note that $[S, T]$ can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$.

- Doing the same possibilistically?
- Does the set of all predicates on S generalise partial Boolean algebras to arbitrary measurement compatibility structures?

Further questions

- External characterisation of adaptive procedures?

Note that $[S, T]$ can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$.

- Doing the same possibilistically?
- Does the set of all predicates on S generalise partial Boolean algebras to arbitrary measurement compatibility structures?
- Examining the closed structure?

Note that it's not monoidal wrt. the usual monoidal structure, but seems closed wrt a 'directed' tensor product.

Questions...

[^0]: Comments: 36 pages. To appear as part of a volume dedicated to Samson Abramsky in Springer's Outstanding Contributions to Logic series
 Subjects: Quantum Physics (quant-ph); Logic in Computer Science (cs.LO); Category Theory (math.CT)
 Cite as: arXiv:2104.11241 [quant-ph]
 (or arXiv:2104.11241v1 [quant-ph] for this version)

[^1]: A convex preserving $F: \operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$

