Free transformations in the resource theory of contextuality

Rui Soares Barbosa

rui.soaresbarbosa@inl.int

Martti Karvonen

martti.karvonen@uottawa.ca

Shane Mansfield

shane.mansfield@quandela.com

QCQMB colloquium 20th October 2021

This talk

▶ Pre-print available at arXiv:2104.11241 [quant-ph].

Quantum Physics

[Submitted on 22 Apr 2021]

Closing Bell: Boxing black box simulations in the resource theory of contextuality

Rui Soares Barbosa, Martti Karvonen, Shane Mansfield

This chapter contains an exposition of the sheaf-theoretic framework for contextuality emphasising resource-theoretic aspects, as well as some original results on this topic. In particular, we consider functions that transform empirical models on a scenario S to empirical models on another scenario T, and characterise those that are induced by classical procedures between S and T corresponding to 'free' operations in the (non-adaptive) resource theory of contextuality. We proceed by expressing such functions as empirical models themselves, on a new scenario built from S and T. Our characterisation then boils down to the non-contextuality of these models. We also show that this construction on scenarios provides a closed structure in the category of measurement scenarios.

Comments: 36 pages. To appear as part of a volume dedicated to Samson Abramsky in Springer's Outstanding Contributions to Logic series

Subjects: Quantum Physics (quant-ph); Logic in Computer Science (cs.LO); Category Theory (math.CT)

Cite as: arXiv:2104.11241 [quant-ph]

(or arXiv:2104.11241v1 [quant-ph] for this version)

This talk

- ▶ Pre-print available at arXiv:2104.11241 [quant-ph].
- ▶ To appear in a volume of Springer's *Outstanding Contributions to Logic* series.

► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - focus shifts from objects (empirical models e: S) to morphisms (convertibility).

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - \triangleright focus shifts from objects (empirical models e:S) to morphisms (convertibility).
 - ▶ $d \rightsquigarrow e$ **simulation** of empirical model e : T using empirical model d : S.

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - ▶ $d \rightsquigarrow e$ **simulation** of empirical model e : T using empirical model d : S.
 - ▶ The 'free' operations are given by classical procedures $S \longrightarrow T$.

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.

Resource theory

- ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
- ▶ $d \rightsquigarrow e$ **simulation** of empirical model e : T using empirical model d : S.
- ▶ The 'free' operations are given by classical procedures $S \longrightarrow T$.
- In this talk, we focus on non-adaptive procedures.

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - focus shifts from objects (empirical models e : S) to morphisms (convertibility).
 - ▶ $d \rightsquigarrow e$ **simulation** of empirical model e : T using empirical model d : S.
 - ▶ The 'free' operations are given by **classical procedures** $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - focus shifts from objects (empirical models e : S) to morphisms (convertibility).
 - ▶ $d \rightsquigarrow e$ **simulation** of empirical model e : T using empirical model d : S.
 - ▶ The 'free' operations are given by classical procedures $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - ightharpoonup Construct a scenario [S, T] from S and T.

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - focus shifts from objects (empirical models e: S) to morphisms (convertibility).
 - ▶ $d \leadsto e$ simulation of empirical model e : T using empirical model d : S.
 - ▶ The 'free' operations are given by **classical procedures** $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - ▶ Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - focus shifts from objects (empirical models e: S) to morphisms (convertibility).
 - ▶ $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - ▶ The 'free' operations are given by **classical procedures** $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - ▶ Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.
 - ightharpoonup F realisable by classical procedure $S\longrightarrow T$ iff e_F is noncontextual

- ► **Contextuality** is a quintessential marker of **non-classicality**, an empirical phenomenon distinguishing QM from classical physical theories.
- ▶ It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - ▶ focus shifts from objects (empirical models *e* : *S*) to morphisms (convertibility).
 - ▶ $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - ▶ The 'free' operations are given by **classical procedures** $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - ▶ Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.
 - ightharpoonup F realisable by classical procedure $S\longrightarrow T$ iff e_F is noncontextual (and satisfies a certain predicate).

- Contextuality is a quintessential marker of non-classicality, an empirical phenomenon distinguishing QM from classical physical theories.
- It has been established as a useful resource conferring advantage in informatic tasks.
- Resource theory
 - focus shifts from objects (empirical models e: S) to morphisms (convertibility).
 - ▶ $d \rightsquigarrow e$ simulation of empirical model e : T using empirical model d : S.
 - ▶ The 'free' operations are given by **classical procedures** $S \longrightarrow T$.
 - In this talk, we focus on non-adaptive procedures.
- ▶ Q: Which maps $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ arise from classical procedures $S \longrightarrow T$?
 - ▶ Construct a scenario [S, T] from S and T.
 - F yields an empirical model $e_F : [S, T]$.
 - ightharpoonup F realisable by classical procedure $S\longrightarrow T$ iff e_F is noncontextual (and satisfies a certain predicate).
 - [-,-] provides a closed structure on (a variant of) the category of measurement scenarios.

Contextuality

► Interaction with system: perform measurements and observe respective outcomes

► Interaction with system: perform measurements and observe respective outcomes

► Interaction with system: perform measurements and observe respective outcomes

► Interaction with system: perform measurements and observe respective outcomes

► Interaction with system: perform measurements and observe respective outcomes

- ► Some subsets of measurements can be performed together . . .
- but some combinations are forbibben!

- ► Some subsets of measurements can be performed together . . .
- but some combinations are forbibben!

- ► Some subsets of measurements can be performed together . . .
- but some combinations are forbibben!

Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

$$\textit{X}_{\textit{S}} = \{\textbf{x}, \textbf{y}, \textbf{z}\},$$

Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

 $ightharpoonup X_S$ is a finite set of **measurements**;

Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

- $ightharpoonup X_S$ is a finite set of **measurements**;
- ▶ $O_S = (O_{S,x})_{x \in X_S}$ specifies for each $x \in X_S$ a non-empty set $O_{S,x}$ of allowed **outcomes**

$$\textit{X}_{\textit{S}} = \{\textbf{x}, \textbf{y}, \textbf{z}\}, \quad \textit{O}_{\textit{S},\textbf{x}} = \textit{O}_{\textit{S},\textbf{y}} = \textit{O}_{\textit{S},\textbf{z}} = \{0,1\},$$

Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

- $ightharpoonup X_S$ is a finite set of **measurements**;
- ▶ $O_S = (O_{S,x})_{x \in X_S}$ specifies for each $x \in X_S$ a non-empty set $O_{S,x}$ of allowed **outcomes**
- $ightharpoonup \Sigma_S$ is an abstract simplicial complex on X_S whose faces are the **measurement contexts**;

$$\mathcal{X}_{\mathcal{S}} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}, \quad \mathcal{O}_{\mathcal{S}, \mathbf{x}} = \mathcal{O}_{\mathcal{S}, \mathbf{y}} = \mathcal{O}_{\mathcal{S}, \mathbf{z}} = \{0, 1\},$$

Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

- $ightharpoonup X_S$ is a finite set of **measurements**;
- ▶ $O_S = (O_{S,x})_{x \in X_S}$ specifies for each $x \in X_S$ a non-empty set $O_{S,x}$ of allowed **outcomes**
- $ightharpoonup \Sigma_S$ is an abstract simplicial complex on X_S whose faces are the **measurement contexts**;
 - i.e. a set of subsets of X_s that: • contains all singletons:

$$\{x\} \in \Sigma_S \text{ for all } x \in X_S;$$

is downwards closed:

$$\sigma \in \Sigma_{\mathcal{S}}$$
 and $\tau \subset \sigma$ implies $\tau \in \Sigma_{\mathcal{S}}$.

$$X_S = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}, \quad O_{S,\mathbf{x}} = O_{S,\mathbf{y}} = O_{S,\mathbf{z}} = \{0,1\},$$

Measurement scenario $S = \langle X_S, \Sigma_S, O_S \rangle$:

- $ightharpoonup X_S$ is a finite set of **measurements**;
- ▶ $O_S = (O_{S,x})_{x \in X_S}$ specifies for each $x \in X_S$ a non-empty set $O_{S,x}$ of allowed **outcomes**
- Σ_S is an abstract simplicial complex on X_S whose faces are the measurement contexts;
 i.e. a set of subsets of X_S that:
 - contains all singletons:

$$\{x\} \in \Sigma_S \text{ for all } x \in X_S;$$

is downwards closed:

$$\sigma \in \Sigma_S$$
 and $\tau \subset \sigma$ implies $\tau \in \Sigma_S$.

$$\textit{X}_{\textit{S}} = \{\texttt{x}, \textbf{y}, \textbf{z}\}, \quad \textit{O}_{\textit{S}, \texttt{x}} = \textit{O}_{\textit{S}, \textbf{y}} = \textit{O}_{\textit{S}, \textbf{z}} = \{\texttt{0}, \texttt{1}\}, \quad \Sigma_{\textit{S}} = \downarrow \{\{\texttt{x}, \textbf{y}\}, \{\texttt{y}, \textbf{z}\}, \{\texttt{x}, \textbf{z}\}\}.$$

Behaviour: empirical model

▶ Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	y z				
y	Z				
X	Z				

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8		
y	Z				
X	Z				

			(0 , 0)	(0, 1)	(1, 0)	(1, 1)
Ī	X	у	3/8	1/8	1/8	
	y	Z				
	X	Z				

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
Х		3/8	1/8	1/8	3/8
y	Z				
X	Z				

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z				
X	Z				

		(0,0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8 3/8	1/8	1/8	3/8
y	Z	3/8			
X	Z				

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	1/8	1/8	3/8
y	Z	3/8	$^{1}/_{8}$	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	У	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$P(x, y \mapsto a, b)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	У	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$P(x, y \mapsto a, b)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	У	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b) \qquad P(x, z \mapsto a, c)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b) \qquad P(x, z \mapsto a, c)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b) \qquad \sum_{c} P(x, z \mapsto a, c)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b) = \sum_{c} P(x, z \mapsto a, c)$$

 Behaviour of system is described by measurement statistics

		(0 , 0)	(0, 1)	(1, 0)	(1, 1)
X	у	3/8	1/8	1/8	3/8
y	Z	3/8	1/8	1/8	3/8
X	Z	1/8	3/8	3/8	1/8

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b) \qquad \sum_{c} P(x, z \mapsto a, c)$$

$$= P(x \mapsto a)$$

 Behaviour of system is described by measurement statistics

		(0,0)	(0, 1)	(1, 0)	(1, 1)
Х	у	3/8	1/8	1/8	3/8
y	Z	3/8	$^{1}/_{8}$	1/8	3/8
X	Z	1/8	3/8	3/8	$^{1}/_{8}$

No-signalling / no-disturbance

$$\sum_{b} P(x, y \mapsto a, b) \qquad \sum_{c} P(x, z \mapsto a, c)$$

$$= P(x \mapsto a)$$

Empirical model e: S is a family $\{e_{\sigma}\}_{{\sigma} \in \Sigma_S}$ where:

- e_{σ} is a probability distribution on the set of joint outcomes $\mathbf{O}_{S,\sigma} := \prod_{x \in \sigma} O_{S,x}$
- ► These satisfy **no-disturbance**: if $\tau \subset \sigma$, then $e_{\sigma}|_{\tau} = e_{\tau}$.

Non-contextual model

Non-contextual model

 \exists probability distribution d on $\mathbf{O}_{S,X_S}=\prod_{x\in X_S}O_{S,x}$ such that $d|_{\sigma}=e_{\sigma}$ for all $\sigma\in\Sigma_S$.

Contextual model

 $|\sharp$ probability distribution d on $\mathbf{O}_{S,X_S}=\prod_{x\in X_S}O_{S,x}$ such that $d|_{\sigma}=e_{\sigma}$ for all $\sigma\in\Sigma_S$.

Resource theory of contextuality

Resource theories

Resource theories

► Consider 'free' (i.e. classical) operations:

Resource theories

► Consider 'free' (i.e. classical) operations: (classical) procedures that use a box of type S to simulate a box of type T

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome in O.

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome in O.

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome in O.

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome in O.

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome in O.

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome in O.

- ▶ An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - ▶ how to interpret their joint outcome into an outcome in *O*.
- A deterministic procedure S → T specifies an S-experiment (O_{T,x}-valued) for each measurement x of T.

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - ▶ how to interpret their joint outcome into an outcome in *O*.
- A deterministic procedure S → T specifies an S-experiment (O_{T,x}-valued) for each measurement x of T.

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - ▶ how to interpret their joint outcome into an outcome in *O*.
- ▶ A deterministic procedure $S \longrightarrow T$ specifies an S-experiment ($O_{T,x}$ -valued) for each measurement x of T. (subject to compatibility conditions)

- ► An *O*-valued *S*-experiment is a protocol for an interaction with the box *S* producing a value in *O*:
 - which measurements to perform;
 - how to interpret their joint outcome into an outcome in O.
- ▶ A deterministic procedure $S \longrightarrow T$ specifies an S-experiment ($O_{T,x}$ -valued) for each measurement x of T. (subject to compatibility conditions)
- A classical procedure is a probabilistic mixture of deterministic procedures.

Deterministic procedure $f: S \longrightarrow T$ is $\langle \pi_f, \alpha_f \rangle$:

▶ $\pi_f : \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:

- ▶ $\pi_f : \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - ▶ for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$

- ▶ $\pi_f : \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - ▶ for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$
 - If $\sigma \in \Sigma_T$ then $\pi_f(\sigma) \in \Sigma_S$, where $\pi_f(\sigma) = \bigcup_{x \in \sigma} \pi_f(x)$.

- ▶ $\pi_f : \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - ▶ for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$
 - If $\sigma \in \Sigma_T$ then $\pi_f(\sigma) \in \Sigma_S$, where $\pi_f(\sigma) = \bigcup_{x \in \sigma} \pi_f(x)$.
- ▶ $\alpha_f = (\alpha_{f,x})_{x \in X_T}$ where $\alpha_{f,x} : \mathbf{O}_{S,\pi_f(x)} \longrightarrow O_{T,x}$ maps joint outcomes of $\pi_f(x)$ to outcomes of x.

Deterministic procedure $f: S \longrightarrow T$ is $\langle \pi_f, \alpha_f \rangle$:

- $\blacktriangleright \pi_f : \Sigma_T \longrightarrow \Sigma_S$ is a simplicial relation:
 - ▶ for each $x \in X_T$ specifies $\pi_f(x) \subset X_S$
 - If $\sigma \in \Sigma_T$ then $\pi_f(\sigma) \in \Sigma_S$, where $\pi_f(\sigma) = \bigcup_{x \in \sigma} \pi_f(x)$.
- ▶ $\alpha_f = (\alpha_{f,x})_{x \in X_T}$ where $\alpha_{f,x} : \mathbf{O}_{S,\pi_f(x)} \longrightarrow O_{T,x}$ maps joint outcomes of $\pi_f(x)$ to outcomes of x.

Probabilistic procedure $f: S \longrightarrow T$ is $f = \sum_i r_i f_i$ where $r_i \ge 0$, $\sum_i r_i = 1$, and $f_i: S \longrightarrow T$ deterministic procedures.

Classical simulations

A classical procedure induces a (convex-preserving) map between empirical models:

Classical simulations

▶ A classical procedure induces a (convex-preserving) map between empirical models:

▶ Which black-box transformations arise in this fashion?

Main question and sketch of the answer

Characterising free transformations

Main question

Given $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by a classical procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Given $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Given $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Special case S = I

Given $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Special case S = I

Given $F : \mathbf{Emp}(I) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : I \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Given $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Special case S = I

Given $F: \{\star\} \longrightarrow \mathbf{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f: I \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Given $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Special case S = I

Given an empirical model $e \in \mathbf{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f: I \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Given $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Special case S = I

Given an empirical model $e \in \mathbf{Emp}(T)$, is it noncontextual?

Given $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an experimental procedure? I.e. is there a procedure $f: S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Special case S = I

Given an empirical model $e \in \mathbf{Emp}(T)$, is it noncontextual? (Non-contextual models are those which can be simulated from nothing.)

From objects to morphisms . . .

Given $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

is special case of

Given an empirical model, is it noncontextual?

From objects to morphisms . . . and back!

Given $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$, can it be realised by an classical procedure? I.e. is there a procedure $f : S \longrightarrow T$ s.t. $F = \mathbf{Emp}(f)$?

Given an empirical model, is it noncontextual?

Answering the question by internalisation

From two scenarios S and \mathcal{T} , we build a new scenario $[S,\mathcal{T}]$.

A convex preserving $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$

A convex preserving $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ induces a canonical model $e_F : [S, T]$.

A convex preserving $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ induces a canonical model $e_F : [S, T]$.

F is realised by a deterministic procedure

A convex preserving $F: \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ induces a canonical model $e_F: [S, T]$. F is realised by a deterministic procedure iff e_F is deterministic.

A convex preserving $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ induces a canonical model $e_F : [S, T]$.

F is realised by a deterministic procedure iff e_F is deterministic.

F is realised by a classical procedure iff e_F is non-contextual.

A convex preserving $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ induces a canonical model $e_F : [S, T]$.

F is realised by a deterministic procedure iff e_F is deterministic and satisfies $g_{[S,T]}$.

F is realised by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

Further details

- ▶ **Measurements** are those of *T*.
- ▶ Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.

- ▶ **Measurements** are those of *T*.
- **Outcomes** of a measurement x from T are **protocols** to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable.

- ▶ **Measurements** are those of *T*.
- ▶ Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable.
 This guarantee is captured by the predicate

$$g_{[S,T]}:[S,T]\longrightarrow \mathbf{2}$$
.

- ▶ **Measurements** are those of *T*.
- ▶ Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable.
 This guarantee is captured by the predicate

$$g_{[S,T]}:[S,T]\longrightarrow \mathbf{2}$$
.

Noncontextual models have predetermined choice of outcome (S-protocol) for each measurement in T, i.e. are classical procedures S → T.

- ▶ Measurements are those of *T*.
- ▶ Outcomes of a measurement x from T are protocols to interact with S and produce an outcome for x.
- Protocols given as joint outcomes to compatible measurements must be jointly performable.
 This guarantee is captured by the predicate

$$g_{[S,T]}:[S,T]\longrightarrow \mathbf{2}$$
.

Noncontextual models have predetermined choice of outcome (S-protocol) for each measurement in T, i.e. are classical procedures S → T.

 $\operatorname{ev}: [S,T]$ " \otimes " S " \longrightarrow " T

 $\mathsf{ev} \; : \; [S,T] \quad \text{``}\otimes\text{''} \quad S \quad \text{``}\longrightarrow\text{''} \quad T$

 $\mathsf{ev} \; : \; [S,T] \quad \text{``}\otimes\text{''} \quad S \quad \text{``}\longrightarrow\text{''} \quad T$

 $\mathsf{ev} \; : \; [S,T] \quad \text{``}\otimes\text{''} \quad S \quad \text{``}\longrightarrow\text{''} \quad T$

ev : [S,T] " \otimes " S " \longrightarrow " T

 $\mathsf{ev} \,:\, [S,T] \ \ "\otimes" \ S \ "\longrightarrow" \ T$

 $\mathsf{ev} : [S,T] \quad "\otimes" \quad S \quad "\longrightarrow" \quad T$

 $\mathsf{ev} : [S,T] \ \mathsf{"}\otimes \mathsf{"} \ S \ \mathsf{"}\longrightarrow \mathsf{"} \ T$

Answering the question I

Facts:

- ▶ Every no-signalling empirical model is an affine mixture of deterministic models.
- ightharpoonup A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Answering the question I

Facts:

- Every no-signalling empirical model is an affine mixture of deterministic models.
- ightharpoonup A function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$ that preserves convex mixtures preserves affine mixtures.

Therefore, a convex-preserving function $\mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on deterministic models, $\mathbf{Det}(S)$.

An S-experiment valued in $\{1,\ldots,n\}$ is a classical procedure $S\longrightarrow \mathbf{n}$.

- **n** is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- ightharpoonup Emp(n) \cong D($\{1,\ldots,n\}$).

An S-experiment valued in $\{1, \ldots, n\}$ is a classical procedure $S \longrightarrow \mathbf{n}$.

- **n** is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- ▶ $Emp(n) \cong D(\{1,\ldots,n\}).$

A convex-preserving function $\text{Emp}(S) \longrightarrow \text{Emp}(n)$ is determined by action on Det(S).

An S-experiment valued in $\{1,\ldots,n\}$ is a classical procedure $S\longrightarrow \mathbf{n}$.

- **n** is the scenario with a single measurement with outcomes in $\{1, \ldots, n\}$.
- ▶ $Emp(n) \cong D(\{1,\ldots,n\}).$

A convex-preserving function $\mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(\mathbf{n})$ is determined by action on $\mathbf{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1,\dots,n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1,\dots,n\}$.

An S-experiment valued in $\{1,\ldots,n\}$ is a classical procedure $S\longrightarrow \mathbf{n}$.

- ▶ **n** is the scenario with a single measurement with outcomes in $\{1, ..., n\}$.
- ▶ $Emp(n) \cong D(\{1,\ldots,n\}).$

A convex-preserving function $\mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(\mathbf{n})$ is determined by action on $\mathbf{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1,\dots,n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1,\dots,n\}$.

Fact:

▶ For any function f out of $\mathbf{Det}(S)$, there is a smallest set U_f of measurements needed to implement f.

An S-experiment valued in $\{1,\ldots,n\}$ is a classical procedure $S\longrightarrow \mathbf{n}$.

- ▶ **n** is the scenario with a single measurement with outcomes in $\{1, ..., n\}$.
- ▶ $Emp(n) \cong D(\{1,\ldots,n\}).$

A convex-preserving function $\mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(\mathbf{n})$ is determined by action on $\mathbf{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1,\dots,n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1,\dots,n\}$.

Fact:

▶ For any function f out of $\mathbf{Det}(S)$, there is a smallest set U_f of measurements needed to implement f.

Thus, f is induced by a deterministic experiment iff U_f is a compatible set of measurements.

An S-experiment valued in $\{1,\ldots,n\}$ is a classical procedure $S\longrightarrow \mathbf{n}$.

- ▶ **n** is the scenario with a single measurement with outcomes in $\{1, ..., n\}$.
- ▶ $Emp(n) \cong D(\{1,\ldots,n\}).$

A convex-preserving function $\mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(\mathbf{n})$ is determined by action on $\mathbf{Det}(S)$.

In turn, $\mathbf{Det}(S) \longrightarrow \mathsf{D}(\{1,\dots,n\})$ yields a convex mixture of functions $\mathbf{Det}(S) \longrightarrow \{1,\dots,n\}$.

Fact:

▶ For any function f out of $\mathbf{Det}(S)$, there is a smallest set U_f of measurements needed to implement f.

Thus, f is induced by a deterministic experiment iff U_f is a compatible set of measurements.

Similarly, $\sum r_i f_i$ is induced by an experiment if each U_{f_i} is a compatible set of measurements.

A convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

A convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\mathbf{Det}(S)$ to joint outcomes of these measurements.

A convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\mathbf{Det}(S)$ to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

A convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\mathbf{Det}(S)$ to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data – an empirical model?

A convex-preserving map $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ is determined by its action on $\mathbf{Det}(S)$.

Given a compatible set of measurements on T, we then get a mixture of deterministic functions from $\mathbf{Det}(S)$ to joint outcomes of these measurements.

Each such function can be replaced by a one that measures the least amount of S possible.

This in turn amounts to giving, for each context, some probabilistic data – an empirical model?

Lemma

A convex-preserving function $F : \mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$ induces a canonical no-signalling empirical model $e_F : [S, T]$.

Main results

Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}.$

Main results

Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

▶ The theorem suggests working with pairs $\langle S, g : S \longrightarrow \mathbf{2} \rangle$ as our basic objects.

Main results

Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

- ▶ The theorem suggests working with pairs $\langle S, g : S \longrightarrow \mathbf{2} \rangle$ as our basic objects.
- A morphism $f: \langle S, g \rangle \longrightarrow \langle T, h \rangle$ is given by a procedure $f: S \longrightarrow T$ such that e: S satisfies $g \implies \operatorname{Emp}(f) e: T$ satisfies h.

Main results

Theorem

F is induced by a classical procedure iff e_F is non-contextual and satisfies $g_{[S,T]}$.

- ▶ The theorem suggests working with pairs $\langle S, g : S \longrightarrow \mathbf{2} \rangle$ as our basic objects.
- ▶ A morphism $f: \langle S, g \rangle \longrightarrow \langle T, h \rangle$ is given by a procedure $f: S \longrightarrow T$ such that e: S satisfies $g \implies \mathsf{Emp}(f) \ e: T$ satisfies h.

Theorem

[-,-] (appropriately modified) makes this category into a closed category.

Closed structure

$$[S,T]$$
 " \otimes " $S \longrightarrow T$

$$[S,T] \ \ \otimes'' \ S \longrightarrow T$$

$$\downarrow S \cong [I,S]$$

$$[S,T] \ \ \otimes'' \ \ [I,S] \longrightarrow [I,T]$$

$$\downarrow generalise$$

$$[S,T] \ \ \otimes'' \ \ [R,S] \longrightarrow [R,T]$$

$$\downarrow curry$$

$$L_{S,T}^{R} : [S,T] \longrightarrow [[R,S],[R,T]]$$

Closed category

$$[-,-]:\mathsf{Scen}^\mathsf{op}\ imes\ \mathsf{Scen}\ \longrightarrow\ \mathsf{Scen}$$

- $i_S: S \stackrel{\cong}{\longrightarrow} [I, S]$ natural in S
- $ightharpoonup j_S: I \longrightarrow [S,S]$ extranatural in S (identity transformations)
- $ightharpoonup \mathsf{L}^R_{S,T} : [S,T] \longrightarrow [[R,S],[R,T]]$ natural in S, T, extranatural in R (curried composition)
- + reasonable coherence axioms

External characterisation of adaptive procedures? Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$.

- External characterisation of adaptive procedures? Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\mathbf{Emp}(S) \longrightarrow \mathbf{Emp}(T)$.
- Doing the same possibilistically?

- External characterisation of adaptive procedures? Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$.
- Doing the same possibilistically?
- ▶ Does the set of all predicates on *S* generalise partial Boolean algebras to arbitrary measurement compatibility structures?

- External characterisation of adaptive procedures? Note that [S, T] can be defined in the adaptive case, but there is no obvious way of building a canonical adaptive empirical model out of a convex-preserving function $\operatorname{Emp}(S) \longrightarrow \operatorname{Emp}(T)$.
- Doing the same possibilistically?
- ▶ Does the set of all predicates on *S* generalise partial Boolean algebras to arbitrary measurement compatibility structures?
- Examining the closed structure? Note that it's not monoidal wrt. the usual monoidal structure, but seems closed wrt a 'directed' tensor product.

Questions...

?