Causal contextuality and adaptive MBQC

Rui Soares Barbosa
(joint work with Cihan Okay)

rui.soaresbarbosa@inl.int

N - 8
INTERNATIONAL IBERIAN
NANOTECHNOLOGY
LABORATORY

5th Workshop on Quantum Contextuality in Quantum Mechanics and Beyond (QCQMB 2022)

Prague, 18th December 2022

Joint work with Cihan Okay

Bilkent University

Funded by the European Union

Joint work with Cihan Okay

Bilkent University

Funded by the European Union

- Related to talks by Samson \& Amy, but only using a particular type of models.
- May have some relation to upcoming talk by Sivert.

Introduction

Quantum advantage

Contextuality / Nonclassicality

Contextuality in MBQC

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

MBQC: Classical control computer with access to quantum resources

Contextuality in MBQC

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

ℓ_{2}-MBQC: Classical control computer with access to quantum resources

Contextuality in MBQC

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

ℓ_{2}-MBQC: Classical control computer with access to quantum resources

- Classical control restricted to \mathbb{Z}_{2}-linear computation

Contextuality in MBQC

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

$\ell_{2}-M B Q C:$ Classical control computer with access to quantum resources

- Classical control restricted to \mathbb{Z}_{2}-linear computation
- Resource treated as a black box, described by its behaviour

Contextuality in MBQC

'Contextuality in measurement-based quantum computation', Raussendorf, PRA 2013.

ℓ_{2}-MBQC: Classical control computer with access to quantum resources

- Classical control restricted to \mathbb{Z}_{2}-linear computation
- Resource treated as a black box, described by its behaviour

Theorem
If an $\ell_{2}-M B Q C$ deterministically computes a nonlinear Boolean function then the resource is strongly contextual.

The AND function

'Computational power of correlations', Anders \& Browne, PRL 2009.

Adaptive MBQC

Adaptive MBQC

Question

In adaptive MBQC:

- For a given computation, the black box is used in a given (partial) order.

Question

In adaptive MBQC:

- For a given computation, the black box is used in a given (partial) order.
- Why should the classical benchmark be so restrictive?

Question

In adaptive MBQC:

- For a given computation, the black box is used in a given (partial) order.
- Why should the classical benchmark be so restrictive?
- We could think of a classical model that exploits this (causal) knowledge.

Question

In adaptive MBQC:

- For a given computation, the black box is used in a given (partial) order.
- Why should the classical benchmark be so restrictive?
- We could think of a classical model that exploits this (causal) knowledge.

Can we find conditions on the computed functions that exclude even such classical HV models?

Non-locality

Bell scenarios

A Bell scenario consists of:

- a set Ω of sites or parties

Bell scenarios

A Bell scenario consists of:

- a set Ω of sites or parties
- for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of questions, or measurement settings
- for each $\omega \in \Omega$ a set \mathcal{A}_{ω} of answers, or measurement outcomes

Bell scenarios

A Bell scenario consists of:

- a set Ω of sites or parties
- for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of questions, or measurement settings
- for each $\omega \in \Omega$ a set \mathcal{A}_{ω} of answers, or measurement outcomes

Given $S \subset \Omega$, we write

$$
\mathcal{Q}_{S}:=\prod_{\omega \in S} \mathcal{Q}_{\omega} \quad \text { and } \quad \mathcal{A}_{S}:=\prod_{\omega \in S} \mathcal{A}_{\omega}
$$

If $S \subset T$ there are restriction maps

$$
\mathcal{Q}_{S \subset T}: \mathcal{Q}_{T} \longrightarrow \mathcal{Q}_{S} \quad \text { and } \quad \mathcal{A}_{S \subset T}: \mathcal{A}_{T} \longrightarrow \mathcal{A}_{S}
$$

Deterministic local models

A deterministic local model is given by a family of functions

$$
f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)
$$

E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathcal{A}_{A}\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathcal{A}_{B}\right)$.

Deterministic local models

A deterministic local model is given by a family of functions

$$
f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)
$$

E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathcal{A}_{A}\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathcal{A}_{B}\right)$.

Equivalently, a function $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that

$$
\mathcal{Q}_{\Omega} \xrightarrow{f} \mathcal{A}_{\Omega}
$$

Deterministic local models

A deterministic local model is given by a family of functions

$$
f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)
$$

E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathcal{A}_{A}\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathcal{A}_{B}\right)$.

Equivalently, a function $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

$$
\mathcal{Q}_{\Omega} \xrightarrow{f} \mathcal{A}_{\Omega}
$$

Deterministic local models

A deterministic local model is given by a family of functions

$$
f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)
$$

E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathcal{A}_{A}\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathcal{A}_{B}\right)$.

Equivalently, a function $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Deterministic local models

A deterministic local model is given by a family of functions

$$
f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)
$$

E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathcal{A}_{A}\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathcal{A}_{B}\right)$.

Equivalently, a function $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Deterministic local models

A deterministic local model is given by a family of functions

$$
f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)
$$

E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathcal{A}_{A}\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathcal{A}_{B}\right)$.

Equivalently, a function $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

$f: \mathcal{Q}_{A} \times \mathcal{Q}_{B} \longrightarrow \mathcal{A}_{A} \times \mathcal{A}_{B}$ such that $f\left(q_{A}, q_{B}\right)=\left(a_{A}, a_{B}\right)=\left(f_{A}\left(q_{A}\right), f_{B}\left(q_{B}\right)\right)$.

Locality and no-signalling

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)$
- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega)$
- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\omega}\right) \quad(\omega \in \Omega)$
- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\omega}\right) \quad(\omega \in \Omega)$

This yields the local models.

- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\omega}\right) \quad(\omega \in \Omega)$

This yields the local models.
E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathbf{D}\left(\mathcal{A}_{A}\right)\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathbf{D}\left(\mathcal{A}_{B}\right)\right)$.

- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\omega}\right) \quad(\omega \in \Omega)$

This yields the local models.
E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathbf{D}\left(\mathcal{A}_{A}\right)\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathbf{D}\left(\mathcal{A}_{B}\right)\right)$.

- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\Omega}\right)$ such that for any $S \subset \Omega$,

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\omega}\right) \quad(\omega \in \Omega)$

This yields the local models.
E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathbf{D}\left(\mathcal{A}_{A}\right)\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathbf{D}\left(\mathcal{A}_{B}\right)\right)$.

- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\Omega}\right)$ such that for any $S \subset \Omega$,

This yields no-signalling models.

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\omega}\right) \quad(\omega \in \Omega)$

This yields the local models.
E.g. bipartite scenario: $\left(\mathcal{Q}_{A} \longrightarrow \mathbf{D}\left(\mathcal{A}_{A}\right)\right) \times\left(\mathcal{Q}_{B} \longrightarrow \mathbf{D}\left(\mathcal{A}_{B}\right)\right)$.

- $f: \mathcal{Q}_{\Omega} \longrightarrow \mathbf{D}\left(\mathcal{A}_{\Omega}\right)$ such that for any $S \subset \Omega$,

This yields no-signalling models.
$f: \mathcal{Q}_{A} \times \mathcal{Q}_{B} \longrightarrow \mathbf{D}\left(\mathcal{A}_{A} \times \mathcal{A}_{B}\right)$ such that $P_{f}\left(a_{A} \mid q_{A}, q_{B}\right)=P_{f}\left(a_{A} \mid q_{A}\right)$ and similarly for a_{B}.

Causal contextuality

Causal scenarios

'The sheaf-theoretic structure of definite causality', Gogioso \& Pinzani, QPL 2021.

- A causal (partial) order between sites

Causal scenarios

'The sheaf-theoretic structure of definite causality’, Gogioso \& Pinzani, QPL 2021.

- A causal (partial) order between sites
- Classical models are allowed to use information from the causal past
- i.e. the answer at a given site may depend on the questions asked at sites in its past.
- Correspondingly, no-signalling gets relaxed, permitting signalling to the future.

NB: a special class of scenarios within the formalism presented by Samson \& Amy.

Causal scenarios

A Bell scenario consists of:

- a set Ω of sites or parties
- for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of questions, or measurement settings
- for each $\omega \in \Omega$ a set \mathcal{A}_{ω} of answers, or measurement outcomes

Given $S \subset \Omega$, we write

$$
\mathcal{Q}_{S}:=\prod_{\omega \in S} \mathcal{Q}_{\omega} \quad \text { and } \quad \mathcal{A}_{S}:=\prod_{\omega \in S} \mathcal{A}_{\omega}
$$

If $S \subset T$ there are restriction maps

$$
\mathcal{Q}_{S \subset T}: \mathcal{Q}_{T} \longrightarrow \mathcal{Q}_{S} \quad \text { and } \quad \mathcal{A}_{S \subset T}: \mathcal{A}_{T} \longrightarrow \mathcal{A}_{S}
$$

Causal scenarios

A causal Bell scenario consists of:

- a partially ordered set Ω of sites or parties
- for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of questions, or measurement settings
- for each $\omega \in \Omega$ a set \mathcal{A}_{ω} of answers, or measurement outcomes

Given $S \subset \Omega$, we write

$$
\mathcal{Q}_{S}:=\prod_{\omega \in S} \mathcal{Q}_{\omega} \quad \text { and } \quad \mathcal{A}_{S}:=\prod_{\omega \in S} \mathcal{A}_{\omega}
$$

If $S \subset T$ there are restriction maps

$$
\mathcal{Q}_{S \subset T}: \mathcal{Q}_{T} \longrightarrow \mathcal{Q}_{S} \quad \text { and } \quad \mathcal{A}_{S \subset T}: \mathcal{A}_{T} \longrightarrow \mathcal{A}_{S}
$$

Causal scenarios

A causal Bell scenario consists of:

- a partially ordered set Ω of sites or parties
- for each $\omega \in \Omega$ a set \mathcal{Q}_{ω} of questions, or measurement settings
- for each $\omega \in \Omega$ a set \mathcal{A}_{ω} of answers, or measurement outcomes

Given $S \subset \Omega$, we write

$$
\mathcal{Q}_{S}:=\prod_{\omega \in S} \mathcal{Q}_{\omega} \quad \text { and } \quad \mathcal{A}_{S}:=\prod_{\omega \in S} \mathcal{A}_{\omega}
$$

If $S \subset T$ there are restriction maps

$$
\mathcal{Q}_{S \subset T}: \mathcal{Q}_{T} \longrightarrow \mathcal{Q}_{S} \quad \text { and } \quad \mathcal{A}_{S \subset T}: \mathcal{A}_{T} \longrightarrow \mathcal{A}_{S}
$$

Notation: $\downarrow \omega:=\left\{\omega^{\prime} \in \Omega \mid \omega^{\prime} \leq \omega\right\}$

$$
\downarrow S:=\bigcup_{\omega \in S} \downarrow \omega=\left\{\omega^{\prime} \in \Omega \mid \exists \omega \in S . \omega^{\prime} \leq \omega\right\}
$$

Deterministic classical causal models

A deterministic causally classical model is given by a family of functions

$$
f_{\omega}: \mathcal{Q}_{\downarrow \omega} \longrightarrow \mathcal{A}_{\omega} \quad(\omega \in \Omega) .
$$

E.g. bipartite scenario with $A \leq B:\left(\mathcal{Q}_{A} \longrightarrow \mathcal{A}_{A}\right) \times\left(\mathcal{Q}_{A} \times \mathcal{Q}_{B} \longrightarrow \mathcal{A}_{B}\right)$.

Equivalently, a function $f: \mathcal{Q}_{\Omega} \longrightarrow \mathcal{A}_{\Omega}$ such that for any $S \subset \Omega$,

$f: \mathcal{Q}_{A} \times \mathcal{Q}_{B} \longrightarrow \mathcal{A}_{A} \times \mathcal{A}_{B}$ such that $f\left(q_{A}, q_{B}\right)=\left(a_{A}, a_{B}\right)=\left(f_{A}\left(q_{A}\right), f_{B}\left(q_{A}, q_{B}\right)\right)$.

Locality and no-signalling

Adding probabilities...

- $f_{\omega}: \mathcal{Q}_{\downarrow \omega} \longrightarrow D\left(\mathcal{A}_{\omega}\right) \quad(\omega \in \Omega)$

This yields the causal classical models.
E.g. bipartite scenario with $A \leq B:\left(\mathcal{Q}_{A} \longrightarrow D\left(\mathcal{A}_{A}\right)\right) \times\left(\mathcal{Q}_{A} \times \mathcal{Q}_{B} \longrightarrow D\left(\mathcal{A}_{B}\right)\right)$.

- $f: \mathcal{Q}_{\Omega} \longrightarrow D\left(\mathcal{A}_{\Omega}\right)$ such that for any $S \subset \Omega$,

This yields models that are no-signalling except from the past.
$f: \mathcal{Q}_{A} \times \mathcal{Q}_{B} \longrightarrow D\left(\mathcal{A}_{A} \times \mathcal{A}_{B}\right)$ such that $P_{f}\left(a_{A} \mid q_{A}, q_{B}\right)=P_{f}\left(a_{A} \mid q_{A}\right)$ but not for a_{B}.

Measurement-based quantum computation

Adaptive $\ell_{2}-\mathrm{MBQC}$

- input size m
- output size I
- adaptive structure (Ω, \leq) with $n=|\Omega|$

Adaptive $\ell_{2}-\mathrm{MBQC}$

- input size m
- output size I
- adaptive structure (Ω, \leq) with $n=|\Omega|$
- $Q: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{n}$
- $T: \mathbb{Z}_{2}^{n} \longrightarrow \mathbb{Z}_{2}^{n}$
- $Z: \mathbb{Z}_{2}^{n} \longrightarrow \mathbb{Z}_{2}^{\prime}$
such that $T_{\omega, \omega^{\prime}} \neq 0 \Rightarrow \omega \leq \omega^{\prime}$

Adaptive $\ell_{2}-M B Q C$

- input size m
- output size I
- adaptive structure (Ω, \leq) with $n=|\Omega|$
- $Q: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{n}$
- $T: \mathbb{Z}_{2}^{n} \longrightarrow \mathbb{Z}_{2}^{n}$
- $Z: \mathbb{Z}_{2}^{n} \longrightarrow \mathbb{Z}_{2}^{\prime}$
such that $T_{\omega, \omega^{\prime}} \neq 0 \Rightarrow \omega \leq \omega^{\prime}$

$$
\begin{aligned}
& \mathbf{q}=Q \mathbf{i}+T \mathbf{s} \\
& \mathbf{s} \leftarrow e(\mathbf{q}) \\
& \mathbf{o}=Z \mathbf{s}
\end{aligned}
$$

implements a function $\mathbb{Z}_{2}^{m} \longrightarrow D\left(\mathbb{Z}_{2}^{\prime}\right)$.

Causal contextuality and adaptive MBQC

Main result

- Functions $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}$ can be represented as m-variable polynomials in $\mathbb{Z}_{2}, \pi(g)$.
- Functions $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{l}$ are represented by l-tuples of m-variable polynomials $\pi(g)=\left\langle\pi(g)_{1}, \ldots \pi(g)_{\imath}\right\rangle$.

Main result

- Functions $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}$ can be represented as m-variable polynomials in $\mathbb{Z}_{2}, \pi(g)$.
- Functions $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{l}$ are represented by l-tuples of m-variable polynomials $\pi(g)=\left\langle\pi(g)_{1}, \ldots \pi(g)_{\ell}\right\rangle$.

Theorem

Let (e, Q, T, Z) be an Ω-adaptive $\ell_{2}-M B Q C$ protocol that deterministically computes a function $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{\prime}$. If e is causally classical then each $\pi(g)_{j}$ is a polynomial with degree at most the height of Ω, where the height of a poset is the maximum length of a chain in it.

Main result

- Functions $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}$ can be represented as m-variable polynomials in $\mathbb{Z}_{2}, \pi(g)$.
- Functions $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{\prime}$ are represented by I-tuples of m-variable polynomials $\pi(g)=\left\langle\pi(g)_{1}, \ldots \pi(g)_{\iota}\right\rangle$.

Theorem

Let (e, Q, T, Z) be an Ω-adaptive $\ell_{2}-M B Q C$ protocol that deterministically computes a function $g: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{Z}_{2}^{\prime}$. If e is causally classical then each $\pi(g)_{j}$ is a polynomial with degree at most the height of Ω, where the height of a poset is the maximum length of a chain in it.

NB: If Ω is flat, i.e. has heigth 1 , one recovers Raussendorf's result about nonlinear functions.

Questions...

